StudentsEducators

Market Failure

Market failure occurs when the allocation of goods and services by a free market is not efficient, leading to a net loss of economic value. This situation often arises due to various reasons, including externalities, public goods, monopolies, and information asymmetries. For example, when the production or consumption of a good affects third parties who are not involved in the transaction, such as pollution from a factory impacting nearby residents, this is known as a negative externality. In such cases, the market fails to account for the social costs, resulting in overproduction. Conversely, public goods, like national defense, are non-excludable and non-rivalrous, meaning that individuals cannot be effectively excluded from their use, leading to underproduction if left solely to the market. Addressing market failures often requires government intervention to promote efficiency and equity in the economy.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Arrow’S Learning By Doing

Arrow's Learning By Doing is a concept introduced by economist Kenneth Arrow, emphasizing the importance of experience in the learning process. The idea suggests that as individuals or firms engage in production or tasks, they accumulate knowledge and skills over time, leading to increased efficiency and productivity. This learning occurs through trial and error, where the mistakes made initially provide valuable feedback that refines future actions.

Mathematically, this can be represented as a positive correlation between the cumulative output QQQ and the level of expertise EEE, where EEE increases with each unit produced:

E=f(Q)E = f(Q)E=f(Q)

where fff is a function representing learning. Furthermore, Arrow posited that this phenomenon not only applies to individuals but also has broader implications for economic growth, as the collective learning in industries can lead to technological advancements and improved production methods.

Fresnel Reflection

Fresnel Reflection refers to the phenomenon that occurs when light hits a boundary between two different media, like air and glass. The amount of light that is reflected or transmitted at this boundary is determined by the Fresnel equations, which take into account the angle of incidence and the refractive indices of the two materials. Specifically, the reflection coefficient RRR can be calculated using the formula:

R=(n1cos⁡(θ1)−n2cos⁡(θ2)n1cos⁡(θ1)+n2cos⁡(θ2))2R = \left( \frac{n_1 \cos(\theta_1) - n_2 \cos(\theta_2)}{n_1 \cos(\theta_1) + n_2 \cos(\theta_2)} \right)^2R=(n1​cos(θ1​)+n2​cos(θ2​)n1​cos(θ1​)−n2​cos(θ2​)​)2

where n1n_1n1​ and n2n_2n2​ are the refractive indices of the two media, and θ1\theta_1θ1​ and θ2\theta_2θ2​ are the angles of incidence and refraction, respectively. Key insights include that the reflection increases at glancing angles, and at a specific angle (known as Brewster's angle), the reflection for polarized light is minimized. This concept is crucial in optics and has applications in various fields, including photography, telecommunications, and even solar panel design, where minimizing unwanted reflection is essential for efficiency.

Friedman’S Permanent Income Hypothesis

Friedman’s Permanent Income Hypothesis (PIH) posits, that individuals base their consumption decisions not solely on their current income, but on their expectations of permanent income, which is an average of expected long-term income. According to this theory, people will smooth their consumption over time, meaning they will save or borrow to maintain a stable consumption level, regardless of short-term fluctuations in income.

The hypothesis can be summarized in the equation:

Ct=αYtPC_t = \alpha Y_t^PCt​=αYtP​

where CtC_tCt​ is consumption at time ttt, YtPY_t^PYtP​ is the permanent income at time ttt, and α\alphaα represents a constant reflecting the marginal propensity to consume. This suggests that temporary changes in income, such as bonuses or windfalls, have a smaller impact on consumption than permanent changes, leading to greater stability in consumption behavior over time. Ultimately, the PIH challenges traditional Keynesian views by emphasizing the role of expectations and future income in shaping economic behavior.

Kalina Cycle

The Kalina Cycle is an innovative thermodynamic cycle used for converting thermal energy into mechanical energy, particularly in power generation applications. It utilizes a mixture of water and ammonia as the working fluid, which allows for a greater efficiency in energy conversion compared to traditional steam cycles. The key advantage of the Kalina Cycle lies in its ability to exploit varying boiling points of the two components in the working fluid, enabling a more effective use of heat sources with different temperatures.

The cycle operates through a series of processes that involve heating, vaporization, expansion, and condensation, ultimately leading to an increased efficiency defined by the Carnot efficiency. Moreover, the Kalina Cycle is particularly suited for low to medium temperature heat sources, making it ideal for geothermal, waste heat recovery, and even solar thermal applications. Its flexibility and higher efficiency make the Kalina Cycle a promising alternative in the pursuit of sustainable energy solutions.

Cantor Function

The Cantor function, also known as the Cantor staircase function, is a classic example of a function that is continuous everywhere but not absolutely continuous. It is defined on the interval [0,1][0, 1][0,1] and maps to [0,1][0, 1][0,1]. The function is constructed using the Cantor set, which is created by repeatedly removing the middle third of intervals.

The Cantor function is defined piecewise and has the following properties:

  • It is non-decreasing.
  • It is constant on the intervals removed during the construction of the Cantor set.
  • It takes the value 0 at x=0x = 0x=0 and approaches 1 at x=1x = 1x=1.

Mathematically, if you let C(x)C(x)C(x) denote the Cantor function, it has the property that it increases on intervals of the Cantor set and remains flat on the intervals that have been removed. The Cantor function is notable for being an example of a continuous function that is not absolutely continuous, as it has a derivative of 0 almost everywhere, yet it increases from 0 to 1.

Landau Damping

Landau Damping is a phenomenon in plasma physics and kinetic theory that describes the damping of oscillations in a plasma due to the interaction between particles and waves. It occurs when the velocity distribution of particles in a plasma leads to a net energy transfer from the wave to the particles, resulting in a decay of the wave's amplitude. This effect is particularly significant when the wave frequency is close to the particle's natural oscillation frequency, allowing faster particles to gain energy from the wave while slower particles lose energy.

Mathematically, Landau Damping can be understood through the linearized Vlasov equation, which describes the evolution of the distribution function of particles in phase space. The key condition for Landau Damping is that the wave vector kkk and the frequency ω\omegaω satisfy the dispersion relation, where the imaginary part of the frequency is negative, indicating a damping effect:

ω(k)=ωr(k)−iγ(k)\omega(k) = \omega_r(k) - i\gamma(k)ω(k)=ωr​(k)−iγ(k)

where ωr(k)\omega_r(k)ωr​(k) is the real part (the oscillatory behavior) and γ(k)>0\gamma(k) > 0γ(k)>0 represents the damping term. This phenomenon is crucial for understanding wave propagation in plasmas and has implications for various applications, including fusion research and space physics.