StudentsEducators

Molecular Docking Virtual Screening

Molecular Docking Virtual Screening is a computational technique widely used in drug discovery to predict the preferred orientation of a small molecule (ligand) when it binds to a target protein (receptor). This method helps in identifying potential drug candidates by simulating how these molecules interact at the atomic level. The process typically involves scoring functions that evaluate the strength of the interaction based on factors such as binding energy, steric complementarity, and electrostatic interactions.

The screening can be performed on large libraries of compounds, allowing researchers to prioritize which molecules should be synthesized and tested experimentally. By employing algorithms that utilize search and optimization techniques, virtual screening can efficiently explore the binding conformations of ligands, ultimately aiding in the acceleration of the drug development process while reducing costs and time.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Shannon Entropy

Shannon Entropy, benannt nach dem Mathematiker Claude Shannon, ist ein Maß für die Unsicherheit oder den Informationsgehalt eines Zufallsprozesses. Es quantifiziert, wie viel Information in einer Nachricht oder einem Datensatz enthalten ist, indem es die Wahrscheinlichkeit der verschiedenen möglichen Ergebnisse berücksichtigt. Mathematisch wird die Shannon-Entropie HHH einer diskreten Zufallsvariablen XXX mit den möglichen Werten x1,x2,…,xnx_1, x_2, \ldots, x_nx1​,x2​,…,xn​ und den entsprechenden Wahrscheinlichkeiten P(x1),P(x2),…,P(xn)P(x_1), P(x_2), \ldots, P(x_n)P(x1​),P(x2​),…,P(xn​) definiert als:

H(X)=−∑i=1nP(xi)log⁡2P(xi)H(X) = -\sum_{i=1}^{n} P(x_i) \log_2 P(x_i)H(X)=−i=1∑n​P(xi​)log2​P(xi​)

Hierbei ist H(X)H(X)H(X) die Entropie in Bits. Eine hohe Entropie weist auf eine große Unsicherheit und damit auf einen höheren Informationsgehalt hin, während eine niedrige Entropie bedeutet, dass die Ergebnisse vorhersehbarer sind. Shannon Entropy findet Anwendung in verschiedenen Bereichen wie Datenkompression, Kryptographie und maschinellem Lernen, wo das Verständnis von Informationsgehalt entscheidend ist.

Gresham’S Law

Gresham’s Law is an economic principle that states that "bad money drives out good money." This phenomenon occurs when there are two forms of currency in circulation, one of higher intrinsic value (good money) and one of lower intrinsic value (bad money). In such a scenario, people tend to hoard the good money, keeping it out of circulation, while spending the bad money, which is perceived as less valuable. This behavior can lead to a situation where the good money effectively disappears from the marketplace, causing the economy to function predominantly on the inferior currency.

For example, if a nation has coins made of precious metals (good money) and new coins made of a less valuable material (bad money), people will prefer to keep the valuable coins for themselves and use the newer, less valuable coins for transactions. Ultimately, this can distort the economy and lead to inflationary pressures as the quality of money in circulation diminishes.

Fiscal Policy Impact

Fiscal policy refers to the use of government spending and taxation to influence the economy. The impact of fiscal policy can be substantial, affecting overall economic activity, inflation rates, and employment levels. When a government increases its spending, it can stimulate demand, leading to higher production and job creation. Conversely, raising taxes can decrease disposable income, which might slow economic growth. The effectiveness of fiscal policy is often analyzed through the multiplier effect, where an initial change in spending leads to a greater overall impact on the economy. For instance, if the government spends an additional $100 million, the total increase in economic output might be several times that amount, depending on how much of that money circulates through the economy.

Key factors influencing fiscal policy impact include:

  • Timing: The speed at which fiscal measures are implemented can affect their effectiveness.
  • Public Sentiment: How the public perceives fiscal measures can influence consumer behavior.
  • Economic Conditions: The current state of the economy (recession vs. expansion) determines the appropriateness of fiscal interventions.

Sunk Cost Fallacy

The Sunk Cost Fallacy refers to the cognitive bias where individuals continue to invest in a project or decision based on the cumulative prior investment (time, money, resources) rather than evaluating the current and future benefits. Essentially, people feel compelled to justify past expenditures, leading them to make irrational choices. For example, if someone has spent $1,000 on a concert ticket but later finds out they cannot attend, they might still go to extreme lengths to attend, believing that their initial investment must not go to waste.

This fallacy can hinder decision-making in both personal and business contexts, as individuals may overlook more rational options that could yield better outcomes. To avoid the Sunk Cost Fallacy, it is essential to focus on the present value of decisions rather than past costs, considering factors such as:

  • Current benefits
  • Future potential
  • Alternative options

In summary, recognizing the Sunk Cost Fallacy can lead to more rational and beneficial decision-making processes.

Stone-Weierstrass Theorem

The Stone-Weierstrass Theorem is a fundamental result in real analysis and functional analysis that extends the Weierstrass Approximation Theorem. It states that if XXX is a compact Hausdorff space and C(X)C(X)C(X) is the space of continuous real-valued functions defined on XXX, then any subalgebra of C(X)C(X)C(X) that separates points and contains a non-zero constant function is dense in C(X)C(X)C(X) with respect to the uniform norm. This means that for any continuous function fff on XXX and any given ϵ>0\epsilon > 0ϵ>0, there exists a function ggg in the subalgebra such that

∥f−g∥<ϵ.\| f - g \| < \epsilon.∥f−g∥<ϵ.

In simpler terms, the theorem assures us that we can approximate any continuous function as closely as desired using functions from a certain collection, provided that collection meets specific criteria. This theorem is particularly useful in various applications, including approximation theory, optimization, and the theory of functional spaces.

Schottky Barrier Diode

The Schottky Barrier Diode is a semiconductor device that is formed by the junction of a metal and a semiconductor, typically n-type silicon. Unlike traditional p-n junction diodes, which have a wide depletion region, the Schottky diode features a much thinner barrier, resulting in faster switching times and lower forward voltage drop. The Schottky barrier is created at the interface between the metal and the semiconductor, allowing for efficient electron flow, which makes it ideal for high-frequency applications and power rectification.

One of the key characteristics of Schottky diodes is their low reverse recovery time, which makes them suitable for use in circuits where rapid switching is required. Additionally, they exhibit a current-voltage relationship defined by the equation:

I=Is(eqVkT−1)I = I_s \left( e^{\frac{qV}{kT}} - 1 \right)I=Is​(ekTqV​−1)

where III is the current, IsI_sIs​ is the saturation current, qqq is the charge of an electron, VVV is the voltage across the diode, kkk is Boltzmann's constant, and TTT is the absolute temperature in Kelvin. This unique structure and performance make Schottky diodes essential components in modern electronics, particularly in power supplies and RF applications.