StudentsEducators

Pell’S Equation Solutions

Pell's equation is a famous Diophantine equation of the form

x2−Dy2=1x^2 - Dy^2 = 1x2−Dy2=1

where DDD is a non-square positive integer, and xxx and yyy are integers. The solutions to Pell's equation can be found using methods involving continued fractions or by exploiting properties of quadratic forms. The fundamental solution, often denoted as (x1,y1)(x_1, y_1)(x1​,y1​), generates an infinite number of solutions through the formulae:

xn+1=x1xn+Dy1ynx_{n+1} = x_1 x_n + D y_1 y_nxn+1​=x1​xn​+Dy1​yn​ yn+1=x1yn+y1xny_{n+1} = x_1 y_n + y_1 x_nyn+1​=x1​yn​+y1​xn​

for n≥1n \geq 1n≥1. These solutions can be expressed in terms of powers of the fundamental solution (x1,y1)(x_1, y_1)(x1​,y1​) in the context of the unit in the ring of integers of the quadratic field Q(D)\mathbb{Q}(\sqrt{D})Q(D​). Thus, Pell's equation not only showcases beautiful mathematical properties but also has applications in number theory, cryptography, and more.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Debt-To-Gdp

The Debt-To-GDP ratio is a key economic indicator that compares a country's total public debt to its gross domestic product (GDP). It is expressed as a percentage and calculated using the formula:

Debt-To-GDP Ratio=(Total Public DebtGross Domestic Product)×100\text{Debt-To-GDP Ratio} = \left( \frac{\text{Total Public Debt}}{\text{Gross Domestic Product}} \right) \times 100Debt-To-GDP Ratio=(Gross Domestic ProductTotal Public Debt​)×100

This ratio helps assess a country's ability to pay off its debt; a higher ratio indicates that a country may struggle to manage its debts effectively, while a lower ratio suggests a healthier economic position. Furthermore, it is useful for investors and policymakers to gauge economic stability and make informed decisions. In general, ratios above 60% can raise concerns about fiscal sustainability, though context matters significantly, including factors such as interest rates, economic growth, and the currency in which the debt is denominated.

Minkowski Sum

The Minkowski Sum is a fundamental concept in geometry and computational geometry, which combines two sets of points in a specific way. Given two sets AAA and BBB in a vector space, the Minkowski Sum is defined as the set of all points that can be formed by adding every element of AAA to every element of BBB. Mathematically, it is expressed as:

A⊕B={a+b∣a∈A,b∈B}A \oplus B = \{ a + b \mid a \in A, b \in B \}A⊕B={a+b∣a∈A,b∈B}

This operation is particularly useful in various applications such as robotics, computer graphics, and optimization. For example, when dealing with the motion of objects, the Minkowski Sum helps in determining the free space available for movement by accounting for the shapes and sizes of obstacles. Additionally, the Minkowski Sum can be visually interpreted as the "inflated" version of a shape, where each point in the original shape is replaced by a translated version of another shape.

Planck Constant

The Planck constant, denoted as hhh, is a fundamental physical constant that plays a crucial role in quantum mechanics. It relates the energy of a photon to its frequency through the equation E=hνE = h \nuE=hν, where EEE is the energy, ν\nuν is the frequency, and hhh has a value of approximately 6.626×10−34 Js6.626 \times 10^{-34} \, \text{Js}6.626×10−34Js. This constant signifies the granularity of energy levels in quantum systems, meaning that energy is not continuous but comes in discrete packets called quanta. The Planck constant is essential for understanding phenomena such as the photoelectric effect and the quantization of energy levels in atoms. Additionally, it sets the scale for quantum effects, indicating that at very small scales, classical physics no longer applies, and quantum mechanics takes over.

Domain Wall Dynamics

Domain wall dynamics refers to the behavior and movement of domain walls, which are boundaries separating different magnetic domains in ferromagnetic materials. These walls can be influenced by various factors, including external magnetic fields, temperature, and material properties. The dynamics of these walls are critical for understanding phenomena such as magnetization processes, magnetic switching, and the overall magnetic properties of materials.

The motion of domain walls can be described using the Landau-Lifshitz-Gilbert (LLG) equation, which incorporates damping effects and external torques. Mathematically, the equation can be represented as:

dmdt=−γm×Heff+αm×dmdt\frac{d\mathbf{m}}{dt} = -\gamma \mathbf{m} \times \mathbf{H}_{\text{eff}} + \alpha \mathbf{m} \times \frac{d\mathbf{m}}{dt}dtdm​=−γm×Heff​+αm×dtdm​

where m\mathbf{m}m is the unit magnetization vector, γ\gammaγ is the gyromagnetic ratio, α\alphaα is the damping constant, and Heff\mathbf{H}_{\text{eff}}Heff​ is the effective magnetic field. Understanding domain wall dynamics is essential for developing advanced magnetic storage technologies, like MRAM (Magnetoresistive Random Access Memory), as well as for applications in spintronics and magnetic sensors.

Arrow’S Theorem

Arrow's Theorem, formuliert von Kenneth Arrow in den 1950er Jahren, ist ein fundamentales Ergebnis der Sozialwahltheorie, das die Herausforderungen bei der Aggregation individueller Präferenzen zu einer kollektiven Entscheidung beschreibt. Es besagt, dass es unter bestimmten Bedingungen unmöglich ist, eine Wahlregel zu finden, die eine Reihe von wünschenswerten Eigenschaften erfüllt. Diese Eigenschaften sind: Nicht-Diktatur, Vollständigkeit, Transitivität, Unabhängigkeit von irrelevanten Alternativen und Pareto-Effizienz.

Das bedeutet, dass selbst wenn Wähler ihre Präferenzen unabhängig und rational ausdrücken, es keine Wahlmethode gibt, die diese Bedingungen für alle möglichen Wählerpräferenzen gleichzeitig erfüllt. In einfacher Form führt Arrow's Theorem zu der Erkenntnis, dass die Suche nach einer "perfekten" Abstimmungsregel, die die kollektiven Präferenzen fair und konsistent darstellt, letztlich zum Scheitern verurteilt ist.

Hicksian Decomposition

The Hicksian Decomposition is an economic concept used to analyze how changes in prices affect consumer behavior, separating the effects of price changes into two distinct components: the substitution effect and the income effect. This approach is named after the economist Sir John Hicks, who contributed significantly to consumer theory.

  1. The substitution effect occurs when a price change makes a good relatively more or less expensive compared to other goods, leading consumers to substitute away from the good that has become more expensive.
  2. The income effect reflects the change in a consumer's purchasing power due to the price change, which affects the quantity demanded of the good.

Mathematically, if the price of a good changes from P1P_1P1​ to P2P_2P2​, the Hicksian decomposition allows us to express the total effect on quantity demanded as:

ΔQ=(Q2−Q1)=Substitution Effect+Income Effect\Delta Q = (Q_2 - Q_1) = \text{Substitution Effect} + \text{Income Effect}ΔQ=(Q2​−Q1​)=Substitution Effect+Income Effect

By using this decomposition, economists can better understand how price changes influence consumer choice and derive insights into market dynamics.