StudentsEducators

Pid Gain Scheduling

PID Gain Scheduling is a control strategy that adjusts the proportional, integral, and derivative (PID) controller gains in real-time based on the operating conditions of a system. This technique is particularly useful in processes where system dynamics change significantly, such as varying temperatures or speeds. By implementing gain scheduling, the controller can optimize its performance across a range of conditions, ensuring stability and responsiveness.

The scheduling is typically done by defining a set of gain parameters for different operating conditions and using a scheduling variable (like the output of a sensor) to interpolate between these parameters. This can be mathematically represented as:

K(t)=Ki+(Ki+1−Ki)⋅S(t)−SiSi+1−SiK(t) = K_i + \left( K_{i+1} - K_i \right) \cdot \frac{S(t) - S_i}{S_{i+1} - S_i}K(t)=Ki​+(Ki+1​−Ki​)⋅Si+1​−Si​S(t)−Si​​

where K(t)K(t)K(t) is the scheduled gain at time ttt, KiK_iKi​ and Ki+1K_{i+1}Ki+1​ are the gains for the relevant intervals, and S(t)S(t)S(t) is the scheduling variable. This approach helps in maintaining optimal control performance throughout the entire operating range of the system.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Endogenous Growth

Endogenous growth theory posits that economic growth is primarily driven by internal factors rather than external influences. This approach emphasizes the role of technological innovation, human capital, and knowledge accumulation as central components of growth. Unlike traditional growth models, which often treat technological progress as an exogenous factor, endogenous growth theories suggest that policy decisions, investments in education, and research and development can significantly impact the overall growth rate.

Key features of endogenous growth include:

  • Knowledge Spillovers: Innovations can benefit multiple firms, leading to increased productivity across the economy.
  • Human Capital: Investment in education enhances the skills of the workforce, fostering innovation and productivity.
  • Increasing Returns to Scale: Firms can experience increasing returns when they invest in knowledge and technology, leading to sustained growth.

Mathematically, the growth rate ggg can be expressed as a function of human capital HHH and technology AAA:

g=f(H,A)g = f(H, A)g=f(H,A)

This indicates that growth is influenced by the levels of human capital and technological advancement within the economy.

Kolmogorov Axioms

The Kolmogorov Axioms form the foundational framework for probability theory, established by the Russian mathematician Andrey Kolmogorov in the 1930s. These axioms define a probability space (S,F,P)(S, \mathcal{F}, P)(S,F,P), where SSS is the sample space, F\mathcal{F}F is a σ-algebra of events, and PPP is the probability measure. The three main axioms are:

  1. Non-negativity: For any event A∈FA \in \mathcal{F}A∈F, the probability P(A)P(A)P(A) is always non-negative:

P(A)≥0P(A) \geq 0P(A)≥0

  1. Normalization: The probability of the entire sample space equals 1:

P(S)=1P(S) = 1P(S)=1

  1. Countable Additivity: For any countable collection of mutually exclusive events A1,A2,…∈FA_1, A_2, \ldots \in \mathcal{F}A1​,A2​,…∈F, the probability of their union is equal to the sum of their probabilities:

P(⋃i=1∞Ai)=∑i=1∞P(Ai)P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)P(⋃i=1∞​Ai​)=∑i=1∞​P(Ai​)

These axioms provide the basis for further developments in probability theory and allow for rigorous manipulation of probabilities

Game Strategy

A game strategy refers to a comprehensive plan or approach that a player employs to achieve their objectives in a game, whether it be a board game, video game, or a competitive sport. Effective strategies often involve analyzing the game's rules, understanding opponents' behaviors, and making decisions that maximize one's chances of winning. Players may utilize various techniques, such as bluffing, resource management, or positioning, depending on the type of game. Moreover, strategies can be categorized into offensive and defensive approaches, each serving different purposes based on the game's context. Ultimately, a successful game strategy not only focuses on one's own actions but also anticipates and counters the moves of opponents, creating a dynamic interplay of tactics and counter-tactics.

Vco Frequency Synthesis

VCO (Voltage-Controlled Oscillator) frequency synthesis is a technique used to generate a wide range of frequencies from a single reference frequency. The core idea is to use a VCO whose output frequency can be adjusted by varying the input voltage, allowing for the precise control of the output frequency. This is typically accomplished through phase-locked loops (PLLs), where the VCO is locked to a reference signal, and its output frequency is multiplied or divided to achieve the desired frequency.

In practice, the relationship between the control voltage VVV and the output frequency fff of a VCO can often be approximated by the equation:

f=f0+k⋅Vf = f_0 + k \cdot Vf=f0​+k⋅V

where f0f_0f0​ is the free-running frequency of the VCO and kkk is the frequency sensitivity. VCO frequency synthesis is widely used in applications such as telecommunications, signal processing, and radio frequency (RF) systems, providing flexibility and accuracy in frequency generation.

Hawking Evaporation

Hawking Evaporation is a theoretical process proposed by physicist Stephen Hawking in 1974, which describes how black holes can lose mass and eventually evaporate over time. This phenomenon arises from the principles of quantum mechanics and general relativity, particularly near the event horizon of a black hole. According to quantum theory, particle-antiparticle pairs can spontaneously form in empty space; when this occurs near the event horizon, one particle may fall into the black hole while the other escapes. The escaping particle is detected as radiation, now known as Hawking radiation, leading to a gradual decrease in the black hole's mass.

The rate of this mass loss is inversely proportional to the mass of the black hole, meaning smaller black holes evaporate faster than larger ones. Over astronomical timescales, this process could result in the complete evaporation of black holes, potentially leaving behind only a remnant of their initial mass. Hawking Evaporation raises profound questions about the nature of information and the fate of matter in the universe, contributing to ongoing debates in theoretical physics.

Retinal Prosthesis

A retinal prosthesis is a biomedical device designed to restore vision in individuals suffering from retinal degenerative diseases, such as retinitis pigmentosa or age-related macular degeneration. It functions by converting light signals into electrical impulses that stimulate the remaining retinal cells, thus enabling the brain to perceive visual information. The system typically consists of an external camera that captures images, a processing unit that translates these images into electrical signals, and a microelectrode array implanted in the eye.

These devices aim to provide a degree of vision, allowing users to perceive shapes, movement, and in some cases, even basic visual patterns. Although the resolution of vision provided by retinal prostheses is currently limited compared to normal sight, ongoing advancements in technology and electrode designs are improving efficacy and user experience. Continued research into this field holds promise for enhancing the quality of life for those affected by vision loss.