StudentsEducators

Poisson Summation Formula

The Poisson Summation Formula is a powerful tool in analysis and number theory that relates the sums of a function evaluated at integer points to the sums of its Fourier transform evaluated at integer points. Specifically, if f(x)f(x)f(x) is a function that decays sufficiently fast, the formula states:

∑n=−∞∞f(n)=∑m=−∞∞f^(m)\sum_{n=-\infty}^{\infty} f(n) = \sum_{m=-\infty}^{\infty} \hat{f}(m)n=−∞∑∞​f(n)=m=−∞∑∞​f^​(m)

where f^(m)\hat{f}(m)f^​(m) is the Fourier transform of f(x)f(x)f(x), defined as:

f^(m)=∫−∞∞f(x)e−2πimx dx.\hat{f}(m) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i mx} \, dx.f^​(m)=∫−∞∞​f(x)e−2πimxdx.

This relationship highlights the duality between the spatial domain and the frequency domain, allowing one to analyze problems in various fields, such as signal processing, by transforming them into simpler forms. The formula is particularly useful in applications involving periodic functions and can also be extended to distributions, making it applicable to a wider range of mathematical contexts.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Convolution Theorem

The Convolution Theorem is a fundamental result in the field of signal processing and linear systems, linking the operations of convolution and multiplication in the frequency domain. It states that the Fourier transform of the convolution of two functions is equal to the product of their individual Fourier transforms. Mathematically, if f(t)f(t)f(t) and g(t)g(t)g(t) are two functions, then:

F{f∗g}(ω)=F{f}(ω)⋅F{g}(ω)\mathcal{F}\{f * g\}(\omega) = \mathcal{F}\{f\}(\omega) \cdot \mathcal{F}\{g\}(\omega)F{f∗g}(ω)=F{f}(ω)⋅F{g}(ω)

where ∗*∗ denotes the convolution operation and F\mathcal{F}F represents the Fourier transform. This theorem is particularly useful because it allows for easier analysis of linear systems by transforming complex convolution operations in the time domain into simpler multiplication operations in the frequency domain. In practical applications, it enables efficient computation, especially when dealing with signals and systems in engineering and physics.

Electron Beam Lithography

Electron Beam Lithography (EBL) is a sophisticated technique used to create extremely fine patterns on a substrate, primarily in semiconductor manufacturing and nanotechnology. This process involves the use of a focused beam of electrons to expose a specially coated surface known as a resist. The exposed areas undergo a chemical change, allowing selective removal of either the exposed or unexposed regions, depending on whether a positive or negative resist is used.

The resolution of EBL can reach down to the nanometer scale, making it invaluable for applications that require high precision, such as the fabrication of integrated circuits, photonic devices, and nanostructures. However, EBL is relatively slow compared to other lithography methods, such as photolithography, which limits its use for mass production. Despite this limitation, its ability to create custom, high-resolution patterns makes it an essential tool in research and development within the fields of microelectronics and nanotechnology.

Sustainable Urban Development

Sustainable Urban Development refers to the design and management of urban areas in a way that meets the needs of the present without compromising the ability of future generations to meet their own needs. This concept encompasses various aspects, including environmental protection, social equity, and economic viability. Key principles include promoting mixed-use developments, enhancing public transportation, and fostering green spaces to improve the quality of life for residents. Furthermore, sustainable urban development emphasizes the importance of community engagement, ensuring that local voices are heard in the planning processes. By integrating innovative technologies and sustainable practices, cities can reduce their carbon footprints and become more resilient to climate change impacts.

Materials Science Innovations

Materials science innovations refer to the groundbreaking advancements in the study and application of materials, focusing on their properties, structures, and functions. This interdisciplinary field combines principles from physics, chemistry, and engineering to develop new materials or improve existing ones. Key areas of innovation include nanomaterials, biomaterials, and smart materials, which are designed to respond dynamically to environmental changes. For instance, nanomaterials exhibit unique properties at the nanoscale, leading to enhanced strength, lighter weight, and improved conductivity. Additionally, the integration of data science and machine learning is accelerating the discovery of new materials, allowing researchers to predict material behaviors and optimize designs more efficiently. As a result, these innovations are paving the way for advancements in various industries, including electronics, healthcare, and renewable energy.

Euler’S Summation Formula

Euler's Summation Formula provides a powerful technique for approximating the sum of a function's values at integer points by relating it to an integral. Specifically, if f(x)f(x)f(x) is a sufficiently smooth function, the formula is expressed as:

∑n=abf(n)≈∫abf(x) dx+f(b)+f(a)2+R\sum_{n=a}^{b} f(n) \approx \int_{a}^{b} f(x) \, dx + \frac{f(b) + f(a)}{2} + Rn=a∑b​f(n)≈∫ab​f(x)dx+2f(b)+f(a)​+R

where RRR is a remainder term that can often be expressed in terms of higher derivatives of fff. This formula illustrates the idea that discrete sums can be approximated using continuous integration, making it particularly useful in analysis and number theory. The accuracy of this approximation improves as the interval [a,b][a, b][a,b] becomes larger, provided that f(x)f(x)f(x) is smooth over that interval. Euler's Summation Formula is an essential tool in asymptotic analysis, allowing mathematicians and scientists to derive estimates for sums that would otherwise be difficult to calculate directly.

Wannier Function Analysis

Wannier Function Analysis is a powerful technique used in solid-state physics and materials science to study the electronic properties of materials. It involves the construction of Wannier functions, which are localized wave functions that provide a convenient basis for representing the electronic states of a crystal. These functions are particularly useful because they allow researchers to investigate the real-space properties of materials, such as charge distribution and polarization, in contrast to the more common momentum-space representations.

The methodology typically begins with the calculation of the Bloch states from the electronic band structure, followed by a unitary transformation to obtain the Wannier functions. Mathematically, if ψk(r)\psi_k(\mathbf{r})ψk​(r) represents the Bloch states, the Wannier functions Wn(r)W_n(\mathbf{r})Wn​(r) can be expressed as:

Wn(r)=1N∑ke−ik⋅rψn,k(r)W_n(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-i \mathbf{k} \cdot \mathbf{r}} \psi_{n,\mathbf{k}}(\mathbf{r})Wn​(r)=N​1​k∑​e−ik⋅rψn,k​(r)

where NNN is the number of k-points in the Brillouin zone. This analysis is essential for understanding phenomena such as topological insulators, superconductivity, and charge transport, making it a crucial tool in modern condensed matter physics.