StudentsEducators

Pulse-Width Modulation Efficiency

Pulse-Width Modulation (PWM) is a technique used to control the power delivered to electrical devices by varying the width of the pulses in a signal. The efficiency of PWM refers to how effectively this method converts input power into usable output power without excessive losses. Key factors influencing PWM efficiency include the frequency of the PWM signal, the load being driven, and the characteristics of the switching components (like transistors) used in the circuit.

In general, PWM is considered efficient because it minimizes heat generation, as the switching devices are either fully on or fully off, leading to lower power losses compared to linear regulation. The efficiency can be quantified using the formula:

Efficiency(η)=PoutPin×100%\text{Efficiency} (\eta) = \frac{P_{\text{out}}}{P_{\text{in}}} \times 100\%Efficiency(η)=Pin​Pout​​×100%

where PoutP_{\text{out}}Pout​ is the output power delivered to the load, and PinP_{\text{in}}Pin​ is the input power from the source. Hence, high PWM efficiency is crucial in applications like motor control and power supply systems, where maintaining energy efficiency is essential for performance and thermal management.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Hilbert’S Paradox Of The Grand Hotel

Hilbert's Paradox of the Grand Hotel is a thought experiment that illustrates the counterintuitive properties of infinity, particularly concerning infinite sets. Imagine a hotel with an infinite number of rooms, all of which are occupied. If a new guest arrives, one might think that there is no room for them; however, the hotel can still accommodate the new guest by shifting every current guest from room nnn to room n+1n+1n+1. This means that the guest in room 1 moves to room 2, the guest in room 2 moves to room 3, and so on, leaving room 1 vacant for the new guest.

This paradox highlights that infinity is not a number but a concept that can accommodate additional elements, even when it appears full. It also demonstrates that the size of infinite sets can lead to surprising results, such as the fact that an infinite set can still grow by adding more members, challenging our everyday understanding of space and capacity.

Euler’S Summation Formula

Euler's Summation Formula provides a powerful technique for approximating the sum of a function's values at integer points by relating it to an integral. Specifically, if f(x)f(x)f(x) is a sufficiently smooth function, the formula is expressed as:

∑n=abf(n)≈∫abf(x) dx+f(b)+f(a)2+R\sum_{n=a}^{b} f(n) \approx \int_{a}^{b} f(x) \, dx + \frac{f(b) + f(a)}{2} + Rn=a∑b​f(n)≈∫ab​f(x)dx+2f(b)+f(a)​+R

where RRR is a remainder term that can often be expressed in terms of higher derivatives of fff. This formula illustrates the idea that discrete sums can be approximated using continuous integration, making it particularly useful in analysis and number theory. The accuracy of this approximation improves as the interval [a,b][a, b][a,b] becomes larger, provided that f(x)f(x)f(x) is smooth over that interval. Euler's Summation Formula is an essential tool in asymptotic analysis, allowing mathematicians and scientists to derive estimates for sums that would otherwise be difficult to calculate directly.

Zobrist Hashing

Zobrist Hashing is a technique used for efficiently computing hash values for game states, particularly in games like chess or checkers. The fundamental idea is to represent each piece on the board with a unique random bitstring, which allows for fast updates to the hash value when the game state changes. Specifically, the hash for the entire board is computed by using the XOR operation across the bitstrings of all pieces present, which gives a constant-time complexity for updates.

When a piece moves, instead of recalculating the hash from scratch, we simply XOR out the bitstring of the piece being moved and XOR in the bitstring of the new piece position. This property makes Zobrist Hashing particularly useful in scenarios where the game state changes frequently, as the computational overhead is minimized. Additionally, the randomness of the bitstrings reduces the chance of hash collisions, ensuring a more reliable representation of different game states.

Einstein Tensor Properties

The Einstein tensor GμνG_{\mu\nu}Gμν​ is a fundamental object in the field of general relativity, encapsulating the curvature of spacetime due to matter and energy. It is defined in terms of the Ricci curvature tensor RμνR_{\mu\nu}Rμν​ and the Ricci scalar RRR as follows:

Gμν=Rμν−12gμνRG_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} RGμν​=Rμν​−21​gμν​R

where gμνg_{\mu\nu}gμν​ is the metric tensor. One of the key properties of the Einstein tensor is that it is divergence-free, meaning that its divergence vanishes:

∇μGμν=0\nabla^\mu G_{\mu\nu} = 0∇μGμν​=0

This property ensures the conservation of energy and momentum in the context of general relativity, as it implies that the Einstein field equations Gμν=8πGTμνG_{\mu\nu} = 8\pi G T_{\mu\nu}Gμν​=8πGTμν​ (where TμνT_{\mu\nu}Tμν​ is the energy-momentum tensor) are self-consistent. Furthermore, the Einstein tensor is symmetric (Gμν=GνμG_{\mu\nu} = G_{\nu\mu}Gμν​=Gνμ​) and has six independent components in four-dimensional spacetime, reflecting the degrees of freedom available for the gravitational field. Overall, the properties of the Einstein tensor play a crucial

Legendre Polynomials

Legendre polynomials are a sequence of orthogonal polynomials that arise in solving problems in physics and engineering, particularly in potential theory and quantum mechanics. They are defined on the interval [−1,1][-1, 1][−1,1] and are denoted by Pn(x)P_n(x)Pn​(x), where nnn is a non-negative integer. The polynomials can be generated using the recurrence relation:

P0(x)=1,P1(x)=x,Pn+1(x)=(2n+1)xPn(x)−nPn−1(x)n+1P_0(x) = 1, \quad P_1(x) = x, \quad P_{n+1}(x) = \frac{(2n + 1)x P_n(x) - n P_{n-1}(x)}{n + 1}P0​(x)=1,P1​(x)=x,Pn+1​(x)=n+1(2n+1)xPn​(x)−nPn−1​(x)​

These polynomials exhibit several important properties, such as orthogonality with respect to the weight function w(x)=1w(x) = 1w(x)=1:

∫−11Pm(x)Pn(x) dx=0for m≠n\int_{-1}^{1} P_m(x) P_n(x) \, dx = 0 \quad \text{for } m \neq n∫−11​Pm​(x)Pn​(x)dx=0for m=n

Legendre polynomials also play a critical role in the expansion of functions in terms of series and in solving partial differential equations, particularly in spherical coordinates, where they appear as solutions to Legendre's differential equation.

Power Spectral Density

Power Spectral Density (PSD) is a measure used in signal processing and statistics to describe how the power of a signal is distributed across different frequency components. It provides a frequency-domain representation of a signal, allowing us to understand which frequencies contribute most to its power. The PSD is typically computed using techniques such as the Fourier Transform, which decomposes a time-domain signal into its constituent frequencies.

The PSD is mathematically defined as the Fourier transform of the autocorrelation function of a signal, and it can be represented as:

S(f)=∫−∞∞R(τ)e−j2πfτdτS(f) = \int_{-\infty}^{\infty} R(\tau) e^{-j 2 \pi f \tau} d\tauS(f)=∫−∞∞​R(τ)e−j2πfτdτ

where S(f)S(f)S(f) is the power spectral density at frequency fff and R(τ)R(\tau)R(τ) is the autocorrelation function of the signal. It is important to note that the PSD is often expressed in units of power per frequency (e.g., Watts/Hz) and helps in identifying the dominant frequencies in a signal, making it invaluable in fields like telecommunications, acoustics, and biomedical engineering.