StudentsEducators

Push-Relabel Algorithm

The Push-Relabel Algorithm is an efficient method for computing the maximum flow in a flow network. It operates on the principle of maintaining a preflow, which allows excess flow at nodes, and then adjusts this excess using two primary operations: push and relabel. In the push operation, the algorithm attempts to send flow from a node with excess flow to its neighbors, while in the relabel operation, it increases the height of a node when no more pushes can be made, effectively allowing for future pushes. The algorithm terminates when no node has excess flow except the source and sink, at which point the flow is maximized. The overall complexity of the Push-Relabel Algorithm is O(V3)O(V^3)O(V3) in the worst case, where VVV is the number of vertices in the network.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Knuth-Morris-Pratt Preprocessing

The Knuth-Morris-Pratt (KMP) algorithm is an efficient method for substring searching that improves upon naive approaches by utilizing preprocessing. The preprocessing phase involves creating a prefix table (also known as the "partial match" table) which helps to skip unnecessary comparisons during the actual search phase. This table records the lengths of the longest proper prefix of the substring that is also a suffix for every position in the substring.

To construct this table, we initialize an array lps\text{lps}lps of the same length as the pattern, where lps[i]\text{lps}[i]lps[i] represents the length of the longest proper prefix which is also a suffix for the substring ending at index iii. The preprocessing runs in O(m)O(m)O(m) time, where mmm is the length of the pattern, ensuring that the subsequent search phase operates in linear time, O(n)O(n)O(n), with respect to the text length nnn. This efficiency makes the KMP algorithm particularly useful for large-scale string matching tasks.

Stackelberg Model

The Stackelberg Model is a strategic game in economics that describes a market scenario where firms compete on output levels. In this model, one firm, known as the leader, makes its production decision first, while the other firm, called the follower, observes this decision and then chooses its own output level. This sequential decision-making process leads to a situation where the leader can potentially secure a competitive advantage by committing to a certain output level before the follower does.

The model is characterized by the following key elements:

  1. Leader and Follower: The leader sets its output first, influencing the follower's decision.
  2. Reaction Function: The follower's output is a function of the leader's output, demonstrating how the follower responds to the leader's choice.
  3. Equilibrium: The equilibrium in this model occurs when both firms have chosen their optimal output levels, considering the actions of the other.

Mathematically, if QLQ_LQL​ is the output of the leader and QFQ_FQF​ is the output of the follower, the total market output is Q=QL+QFQ = Q_L + Q_FQ=QL​+QF​, where the follower's output can be expressed as a reaction function QF=R(QL)Q_F = R(Q_L)QF​=R(QL​). The Stackelberg Model highlights the importance of strategic commitment in oligopolistic markets.

Maximum Bipartite Matching

Maximum Bipartite Matching is a fundamental problem in graph theory that aims to find the largest possible matching in a bipartite graph. A bipartite graph consists of two distinct sets of vertices, say UUU and VVV, such that every edge connects a vertex in UUU to a vertex in VVV. A matching is a set of edges that does not have any shared vertices, and the goal is to maximize the number of edges in this matching. The maximum matching is the matching that contains the largest number of edges possible.

To solve this problem, algorithms such as the Hopcroft-Karp algorithm can be utilized, which operates in O(EV)O(E \sqrt{V})O(EV​) time complexity, where EEE is the number of edges and VVV is the number of vertices in the graph. Applications of maximum bipartite matching can be seen in various fields such as job assignments, network flows, and resource allocation problems, making it a crucial concept in both theoretical and practical contexts.

Quantum Well Absorption

Quantum well absorption refers to the process by which light is absorbed by a semiconductor material that incorporates quantum wells—thin layers of semiconductor material where charge carriers are confined in one dimension. These quantum wells create discrete energy levels due to the quantum confinement effect, allowing for unique optical properties. When light of an appropriate energy interacts with the quantum well, electrons can be excited from the valence band to the conduction band, leading to absorption. This phenomenon is particularly significant in optoelectronic devices, such as lasers and photodetectors, where the absorption characteristics can be finely tuned by adjusting the quantum well dimensions and materials. Quantum well absorption is essential for enhancing the efficiency and performance of these devices, as it enables the control of light-matter interactions at the nanoscale.

Neural Spike Sorting Methods

Neural spike sorting methods are essential techniques used in neuroscience to classify and identify action potentials, or "spikes," generated by individual neurons from multi-electrode recordings. The primary goal of spike sorting is to accurately separate the electrical signals of different neurons that may be recorded simultaneously. This process typically involves several key steps, including preprocessing the raw data to reduce noise, feature extraction to identify characteristics of the spikes, and clustering to group similar spike shapes that correspond to the same neuron.

Common spike sorting algorithms include template matching, principal component analysis (PCA), and machine learning approaches such as k-means clustering or neural networks. Each method has its advantages and trade-offs in terms of accuracy, speed, and computational complexity. The effectiveness of these methods is critical for understanding neuronal communication and activity patterns in various biological and clinical contexts.

Sallen-Key Filter

The Sallen-Key filter is a popular active filter topology used to create low-pass, high-pass, band-pass, and notch filters. It primarily consists of operational amplifiers (op-amps), resistors, and capacitors, allowing for precise control over the filter's characteristics. The configuration is known for its simplicity and effectiveness in achieving second-order filter responses, which exhibit a steeper roll-off compared to first-order filters.

One of the key advantages of the Sallen-Key filter is its ability to provide high gain while maintaining a flat frequency response within the passband. The transfer function of a typical Sallen-Key low-pass filter can be expressed as:

H(s)=K1+sω0+(sω0)2H(s) = \frac{K}{1 + \frac{s}{\omega_0} + \left( \frac{s}{\omega_0} \right)^2}H(s)=1+ω0​s​+(ω0​s​)2K​

where KKK is the gain and ω0\omega_0ω0​ is the cutoff frequency. Its versatility makes it a common choice in audio processing, signal conditioning, and other electronic applications where filtering is required.