Quantum Spin Liquids (QSLs) are a fascinating state of matter that arise in certain quantum systems, particularly in two-dimensional geometries. Unlike conventional magnets that exhibit long-range magnetic order at low temperatures, QSLs maintain a disordered state even at absolute zero, characterized by highly entangled quantum states. This phenomenon occurs due to frustration among spins, which prevents them from settling into a stable arrangement.
In a QSL, the spins can be thought of as living in a superposition of states, leading to unique properties such as the emergence of fractionalized excitations. These excitations can behave as independent quasiparticles, which may include magnetic monopoles or fermionic excitations, depending on the specific QSL model. The study of quantum spin liquids has implications for quantum computing, as their entangled states could potentially be harnessed for robust quantum information storage and processing.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.