StudentsEducators

Van Hove Singularity

The Van Hove Singularity refers to a phenomenon in the field of condensed matter physics, particularly in the study of electronic states in solids. It occurs at certain points in the energy band structure of a material, where the density of states (DOS) diverges due to the presence of critical points in the dispersion relation. This divergence typically happens at specific energies, denoted as EcE_cEc​, where the Fermi surface of the material exhibits a change in topology or geometry.

The mathematical representation of the density of states can be expressed as:

D(E)∝∣dkdE∣−1D(E) \propto \left| \frac{d k}{d E} \right|^{-1}D(E)∝​dEdk​​−1

where kkk is the wave vector. When the derivative dkdE\frac{d k}{d E}dEdk​ approaches zero, the density of states D(E)D(E)D(E) diverges, leading to significant physical implications such as enhanced electronic correlations, phase transitions, and the emergence of new collective phenomena. Understanding Van Hove Singularities is crucial for exploring various properties of materials, including superconductivity and magnetism.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Cantor Set

The Cantor Set is a fascinating example of a fractal in mathematics, constructed through an iterative process. It begins with the closed interval [0,1][0, 1][0,1] and removes the open middle third segment (13,23)\left(\frac{1}{3}, \frac{2}{3}\right)(31​,32​), resulting in two segments: [0,13][0, \frac{1}{3}][0,31​] and [23,1][\frac{2}{3}, 1][32​,1]. This process is then repeated for each remaining segment, removing the middle third of each segment in every subsequent iteration.

Mathematically, after nnn iterations, the Cantor Set can be expressed as:

Cn=⋃k=02n−1[k3n,k+13n]C_n = \bigcup_{k=0}^{2^n-1} \left[\frac{k}{3^n}, \frac{k+1}{3^n}\right]Cn​=k=0⋃2n−1​[3nk​,3nk+1​]

As nnn approaches infinity, the Cantor Set is the limit of this process, resulting in a set that contains no intervals but is uncountably infinite, demonstrating the counterintuitive nature of infinity in mathematics. Notably, the Cantor Set is also an example of a set that is both totally disconnected and perfect, as it contains no isolated points.

Cauchy Sequence

A Cauchy sequence is a fundamental concept in mathematical analysis, particularly in the study of convergence in metric spaces. A sequence (xn)(x_n)(xn​) of real or complex numbers is called a Cauchy sequence if, for every positive real number ϵ\epsilonϵ, there exists a natural number NNN such that for all integers m,n≥Nm, n \geq Nm,n≥N, the following condition holds:

∣xm−xn∣<ϵ|x_m - x_n| < \epsilon∣xm​−xn​∣<ϵ

This definition implies that the terms of the sequence become arbitrarily close to each other as the sequence progresses. In simpler terms, as you go further along the sequence, the values do not just converge to a limit; they also become tightly clustered together. An important result is that every Cauchy sequence converges in complete spaces, such as the real numbers. However, some metric spaces are not complete, meaning that a Cauchy sequence may not converge within that space, which is a critical point in understanding the structure of different number systems.

Lempel-Ziv

The Lempel-Ziv family of algorithms refers to a class of lossless data compression techniques, primarily developed by Abraham Lempel and Jacob Ziv in the late 1970s. These algorithms work by identifying and eliminating redundancy in data sequences, effectively reducing the overall size of the data without losing any information. The most prominent variants include LZ77 and LZ78, which utilize a dictionary-based approach to replace repeated occurrences of data with shorter codes.

In LZ77, for example, sequences of data are replaced by references to earlier occurrences, represented as pairs of (distance, length), which indicate where to find the repeated data in the uncompressed stream. This method allows for efficient compression ratios, particularly in text and binary files. The fundamental principle behind Lempel-Ziv algorithms is their ability to exploit the inherent patterns within data, making them widely used in formats such as ZIP and GIF, as well as in communication protocols.

Van Der Waals Heterostructures

Van der Waals heterostructures are engineered materials composed of two or more different two-dimensional (2D) materials stacked together, relying on van der Waals forces for adhesion rather than covalent bonds. These heterostructures enable the combination of distinct electronic, optical, and mechanical properties, allowing for novel functionalities that cannot be achieved with individual materials. For instance, by stacking transition metal dichalcogenides (TMDs) with graphene, researchers can create devices with tunable band gaps and enhanced carrier mobility. The alignment of the layers can be precisely controlled, leading to the emergence of phenomena such as interlayer excitons and superconductivity. The versatility of van der Waals heterostructures makes them promising candidates for applications in next-generation electronics, photonics, and quantum computing.

Schur’S Theorem In Algebra

Schur's Theorem is a significant result in the realm of algebra, particularly in the theory of group representations. It states that if a group GGG has a finite number of irreducible representations over the complex numbers, then any representation of GGG can be decomposed into a direct sum of these irreducible representations. In mathematical terms, if VVV is a finite-dimensional representation of GGG, then there exist irreducible representations V1,V2,…,VnV_1, V_2, \ldots, V_nV1​,V2​,…,Vn​ such that

V≅V1⊕V2⊕…⊕Vn.V \cong V_1 \oplus V_2 \oplus \ldots \oplus V_n.V≅V1​⊕V2​⊕…⊕Vn​.

This theorem emphasizes the structured nature of representations and highlights the importance of irreducible representations as building blocks. Furthermore, it implies that the character of the representation can be expressed in terms of the characters of the irreducible representations, making it a powerful tool in both theoretical and applied contexts. Schur's Theorem serves as a bridge between linear algebra and group theory, illustrating how abstract algebraic structures can be understood through their representations.

Prim’S Algorithm

Prim's Algorithm is a greedy algorithm used to find the minimum spanning tree (MST) of a weighted, undirected graph. The algorithm starts with a single vertex and grows the MST by adding the smallest edge that connects a vertex in the tree to a vertex outside the tree. This process continues until all vertices are included in the tree. The steps of Prim's Algorithm can be summarized as follows:

  1. Initialization: Begin with an arbitrary vertex, marking it as part of the MST.
  2. Edge Selection: Identify the minimum weight edge connecting the vertices in the MST to those outside of it.
  3. Update: Add this edge and the connected vertex to the MST.
  4. Repeat: Continue selecting the minimum edge until all vertices are included.

The efficiency of Prim's Algorithm can be improved using data structures like a priority queue, resulting in a time complexity of O(Elog⁡V)O(E \log V)O(ElogV), where EEE is the number of edges and VVV is the number of vertices.