Wavelet Transform is a powerful mathematical tool widely used in various fields due to its ability to analyze data at different scales and resolutions. In signal processing, it helps in tasks such as noise reduction, compression, and feature extraction by breaking down signals into their constituent wavelets, allowing for easier analysis of non-stationary signals. In image processing, wavelet transforms are utilized for image compression (like JPEG2000) and denoising, where the multi-resolution analysis enables preservation of important features while removing noise. Additionally, in financial analysis, they assist in detecting trends and patterns in time series data by capturing both high-frequency fluctuations and low-frequency trends. The versatility of wavelet transforms makes them invaluable in areas such as medical imaging, geophysics, and even machine learning for data classification and feature extraction.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.