StudentsEducators

Arithmetic Coding

Arithmetic Coding is a form of entropy encoding used in lossless data compression. Unlike traditional methods such as Huffman coding, which assigns a fixed-length code to each symbol, arithmetic coding encodes an entire message into a single number in the interval [0,1)[0, 1)[0,1). The process involves subdividing this range based on the probabilities of each symbol in the message: as each symbol is processed, the interval is narrowed down according to its cumulative frequency. For example, if a message consists of symbols AAA, BBB, and CCC with probabilities P(A)P(A)P(A), P(B)P(B)P(B), and P(C)P(C)P(C), the intervals for each symbol would be defined as follows:

  • A:[0,P(A))A: [0, P(A))A:[0,P(A))
  • B:[P(A),P(A)+P(B))B: [P(A), P(A) + P(B))B:[P(A),P(A)+P(B))
  • C:[P(A)+P(B),1)C: [P(A) + P(B), 1)C:[P(A)+P(B),1)

This method offers a more efficient representation of the message, especially with long sequences of symbols, as it can achieve better compression ratios by leveraging the cumulative probability distribution of the symbols. After the sequence is completely encoded, the final number can be rounded to create a binary output, making it suitable for various applications in data compression, such as in image and video coding.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Boyer-Moore

The Boyer-Moore algorithm is a highly efficient string-searching algorithm that is used to find a substring (the pattern) within a larger string (the text). It operates by utilizing two heuristics: the bad character rule and the good suffix rule. The bad character rule allows the algorithm to skip sections of the text when a mismatch occurs, by shifting the pattern to align with the last occurrence of the mismatched character in the pattern. The good suffix rule enhances this by shifting the pattern based on the matched suffix, allowing it to skip even more text.

The algorithm is particularly effective for large texts and patterns, with an average-case time complexity of O(n/m)O(n/m)O(n/m), where nnn is the length of the text and mmm is the length of the pattern. This makes Boyer-Moore significantly faster than simpler algorithms like the naive search, especially when the alphabet size is large or the pattern is relatively short compared to the text. Overall, its combination of heuristics allows for substantial reductions in the number of character comparisons needed during the search process.

Arrow’S Impossibility Theorem

Arrow's Impossibility Theorem, formuliert von Kenneth Arrow in den 1950er Jahren, besagt, dass es kein Wahlsystem gibt, das gleichzeitig eine Reihe von als fair erachteten Bedingungen erfüllt, wenn es mehr als zwei Optionen gibt. Diese Bedingungen sind:

  1. Unabhängigkeit von irrelevanten Alternativen: Die Wahl zwischen zwei Alternativen sollte nicht von der Anwesenheit oder Abwesenheit einer dritten, irrelevanten Option beeinflusst werden.
  2. Nicht-Diktatur: Es sollte keinen einzelnen Wähler geben, dessen Präferenzen die endgültige Wahl immer bestimmen.
  3. Vollständigkeit und Transitivität: Die Wähler sollten in der Lage sein, alle Alternativen zu bewerten, und ihre Präferenzen sollten konsistent sein.
  4. Bestrafung oder Nicht-Bestrafung: Wenn eine Option in einer Wahl als besser bewertet wird, sollte sie auch in der Gesamtbewertung nicht schlechter abschneiden.

Arrow bewies, dass es unmöglich ist, ein Wahlsystem zu konstruieren, das diese Bedingungen gleichzeitig erfüllt, was zu tiefgreifenden Implikationen für die Sozialwahltheorie und die politische Entscheidungsfindung führt. Das Theorem zeigt die Herausforderungen und Komplexität der Aggregation von individuellen Präferenzen in eine kollektive Entscheidung auf.

Keynesian Beauty Contest

The Keynesian Beauty Contest is an economic concept introduced by the British economist John Maynard Keynes to illustrate how expectations influence market behavior. In this analogy, participants in a beauty contest must choose the most attractive contestants, not based on their personal preferences, but rather on what they believe others will consider attractive. This leads to a situation where individuals focus on predicting the choices of others, rather than their own beliefs about beauty.

In financial markets, this behavior manifests as investors making decisions based on their expectations of how others will react, rather than on fundamental values. As a result, asset prices can become disconnected from their intrinsic values, leading to volatility and bubbles. The contest highlights the importance of collective psychology in economics, emphasizing that market dynamics are heavily influenced by perceptions and expectations.

Cellular Bioinformatics

Cellular Bioinformatics is an interdisciplinary field that combines biological data analysis with computational techniques to understand cellular processes at a molecular level. It leverages big data generated from high-throughput technologies, such as genomics, transcriptomics, and proteomics, to analyze cellular functions and interactions. By employing statistical methods and machine learning, researchers can identify patterns and correlations in complex biological data, which can lead to insights into disease mechanisms, cellular behavior, and potential therapeutic targets.

Key applications of cellular bioinformatics include:

  • Gene expression analysis to understand how genes are regulated in different conditions.
  • Protein-protein interaction networks to explore how proteins communicate and function together.
  • Pathway analysis to map cellular processes and their alterations in diseases.

Overall, cellular bioinformatics is crucial for transforming vast amounts of biological data into actionable knowledge that can enhance our understanding of life at the cellular level.

Hahn-Banach

The Hahn-Banach theorem is a fundamental result in functional analysis, which extends the notion of linear functionals. It states that if ppp is a sublinear function and fff is a linear functional defined on a subspace MMM of a normed space XXX such that f(x)≤p(x)f(x) \leq p(x)f(x)≤p(x) for all x∈Mx \in Mx∈M, then there exists an extension of fff to the entire space XXX that preserves linearity and satisfies the same inequality, i.e.,

f~(x)≤p(x)for all x∈X.\tilde{f}(x) \leq p(x) \quad \text{for all } x \in X.f~​(x)≤p(x)for all x∈X.

This theorem is crucial because it guarantees the existence of bounded linear functionals, allowing for the separation of convex sets and facilitating the study of dual spaces. The Hahn-Banach theorem is widely used in various fields such as optimization, economics, and differential equations, as it provides a powerful tool for extending solutions and analyzing function spaces.

Fisher Effect Inflation

The Fisher Effect refers to the relationship between inflation and both real and nominal interest rates, as proposed by economist Irving Fisher. It posits that the nominal interest rate is equal to the real interest rate plus the expected inflation rate. This can be represented mathematically as:

i=r+πei = r + \pi^ei=r+πe

where iii is the nominal interest rate, rrr is the real interest rate, and πe\pi^eπe is the expected inflation rate. As inflation rises, lenders demand higher nominal interest rates to compensate for the decrease in purchasing power over time. Consequently, if inflation expectations increase, nominal interest rates will also rise, maintaining the real interest rate. This effect highlights the importance of inflation expectations in financial markets and the economy as a whole.