StudentsEducators

Cournot Oligopoly

The Cournot Oligopoly model describes a market structure in which a small number of firms compete by choosing quantities to produce, rather than prices. Each firm decides how much to produce with the assumption that the output levels of the other firms remain constant. This interdependence leads to a Nash Equilibrium, where no firm can benefit by changing its output level while the others keep theirs unchanged. In this setting, the total quantity produced in the market determines the market price, typically resulting in a price that is above marginal costs, allowing firms to earn positive economic profits. The model is named after the French economist Antoine Augustin Cournot, and it highlights the balance between competition and cooperation among firms in an oligopolistic market.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Hyperbolic Geometry Fundamentals

Hyperbolic geometry is a non-Euclidean geometry characterized by a consistent system of axioms that diverges from the familiar Euclidean framework. In hyperbolic space, the parallel postulate of Euclid does not hold; instead, through a point not on a given line, there are infinitely many lines that do not intersect the original line. This leads to unique properties, such as triangles having angles that sum to less than 180∘180^\circ180∘, and the existence of hyperbolic circles whose area grows exponentially with their radius. The geometry can be visualized using models like the Poincaré disk or the hyperboloid model, which help illustrate the curvature inherent in hyperbolic space. Key applications of hyperbolic geometry can be found in various fields, including theoretical physics, art, and complex analysis, as it provides a framework for understanding hyperbolic phenomena in different contexts.

Smith Predictor

The Smith Predictor is a control strategy used to enhance the performance of feedback control systems, particularly in scenarios where there are significant time delays. This method involves creating a predictive model of the system to estimate the future behavior of the process variable, thereby compensating for the effects of the delay. The key concept is to use a dynamic model of the process, which allows the controller to anticipate changes in the output and adjust the control input accordingly.

The Smith Predictor consists of two main components: the process model and the controller. The process model predicts the output based on the current input and the known dynamics of the system, while the controller adjusts the input based on the predicted output rather than the delayed actual output. This approach can be particularly effective in systems where the delays can lead to instability or poor performance.

In mathematical terms, if G(s)G(s)G(s) represents the transfer function of the process and TdT_dTd​ the time delay, the Smith Predictor can be formulated as:

Y(s)=G(s)U(s)e−TdsY(s) = G(s)U(s) e^{-T_d s}Y(s)=G(s)U(s)e−Td​s

where Y(s)Y(s)Y(s) is the output, U(s)U(s)U(s) is the control input, and e−Tdse^{-T_d s}e−Td​s represents the time delay. By effectively 'removing' the delay from the feedback loop, the Smith Predictor enables more responsive and stable control.

Fermi Golden Rule

The Fermi Golden Rule is a fundamental principle in quantum mechanics that describes the transition rates of quantum states due to a perturbation, typically in the context of scattering processes or decay. It provides a way to calculate the probability per unit time of a transition from an initial state to a final state when a system is subjected to a weak external perturbation. Mathematically, it is expressed as:

Γfi=2πℏ∣⟨f∣H′∣i⟩∣2ρ(Ef)\Gamma_{fi} = \frac{2\pi}{\hbar} | \langle f | H' | i \rangle |^2 \rho(E_f)Γfi​=ℏ2π​∣⟨f∣H′∣i⟩∣2ρ(Ef​)

where Γfi\Gamma_{fi}Γfi​ is the transition rate from state ∣i⟩|i\rangle∣i⟩ to state ∣f⟩|f\rangle∣f⟩, H′H'H′ is the perturbing Hamiltonian, and ρ(Ef)\rho(E_f)ρ(Ef​) is the density of final states at the energy EfE_fEf​. The rule implies that transitions are more likely to occur if the perturbation matrix element ⟨f∣H′∣i⟩\langle f | H' | i \rangle⟨f∣H′∣i⟩ is large and if there are many available final states, as indicated by the density of states. This principle is widely used in various fields, including nuclear, particle, and condensed matter physics, to analyze processes like radioactive decay and electron transitions.

Dynamic Stochastic General Equilibrium

Dynamic Stochastic General Equilibrium (DSGE) models are a class of macroeconomic models that analyze how economies evolve over time under the influence of random shocks. These models are built on three main components: dynamics, which refers to how the economy changes over time; stochastic processes, which capture the randomness and uncertainty in economic variables; and general equilibrium, which ensures that supply and demand across different markets are balanced simultaneously.

DSGE models often incorporate microeconomic foundations, meaning they are grounded in the behavior of individual agents such as households and firms. These agents make decisions based on expectations about the future, which adds to the complexity and realism of the model. The equations that govern these models can be represented mathematically, for instance, using the following general form for an economy with nnn equations:

F(yt,yt−1,zt)=0G(yt,θ)=0\begin{align*} F(y_t, y_{t-1}, z_t) &= 0 \\ G(y_t, \theta) &= 0 \end{align*}F(yt​,yt−1​,zt​)G(yt​,θ)​=0=0​

where yty_tyt​ represents the state variables of the economy, ztz_tzt​ captures stochastic shocks, and θ\thetaθ includes parameters that define the model's structure. DSGE models are widely used by central banks and policymakers to analyze the impact of economic policies and external shocks on macroeconomic stability.

Kelvin–Stokes theorem

Stokes' Theorem is a fundamental result in vector calculus that relates surface integrals of vector fields over a surface to line integrals over the boundary of that surface. Specifically, it states that if F\mathbf{F}F is a vector field that is continuously differentiable on a surface SSS bounded by a simple, closed curve CCC, then the theorem can be expressed mathematically as:

∬S(∇×F)⋅dS=∮CF⋅dr\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \oint_C \mathbf{F} \cdot d\mathbf{r}∬S​(∇×F)⋅dS=∮C​F⋅dr

In this equation, ∇×F\nabla \times \mathbf{F}∇×F represents the curl of the vector field, dSd\mathbf{S}dS is a vector representing an infinitesimal area on the surface SSS, and drd\mathbf{r}dr is a differential element of the curve CCC. Essentially, Stokes' Theorem provides a powerful tool for converting complex surface integrals into simpler line integrals, facilitating the computation of various physical problems, such as fluid flow and electromagnetism. This theorem highlights the deep connection between the topology of surfaces and the behavior of vector fields in three-dimensional space.

Rna Sequencing Technology

RNA sequencing (RNA-Seq) is a powerful technique used to analyze the transcriptome of a cell, providing insights into gene expression, splicing variations, and the presence of non-coding RNAs. This technology involves the conversion of RNA into complementary DNA (cDNA) through reverse transcription, followed by amplification and sequencing of the cDNA using high-throughput sequencing platforms. RNA-Seq enables researchers to quantify RNA levels across different conditions, identify novel transcripts, and detect gene fusions or mutations. The data generated can be analyzed to create expression profiles, which help in understanding cellular responses to various stimuli or diseases. Overall, RNA sequencing has become an essential tool in genomics, systems biology, and personalized medicine, contributing significantly to our understanding of complex biological processes.