StudentsEducators

Einstein Coefficient

The Einstein Coefficient refers to a set of proportionality constants that describe the probabilities of various processes related to the interaction of light with matter, specifically in the context of atomic and molecular transitions. There are three main types of coefficients: AijA_{ij}Aij​, BijB_{ij}Bij​, and BjiB_{ji}Bji​.

  • AijA_{ij}Aij​: This coefficient quantifies the probability per unit time of spontaneous emission of a photon from an excited state jjj to a lower energy state iii.
  • BijB_{ij}Bij​: This coefficient describes the probability of absorption, where a photon is absorbed by a system transitioning from state iii to state jjj.
  • BjiB_{ji}Bji​: Conversely, this coefficient accounts for stimulated emission, where an incoming photon induces the transition from state jjj to state iii.

The relationships among these coefficients are fundamental in understanding the Boltzmann distribution of energy states and the Planck radiation law, linking the microscopic interactions of photons with macroscopic observables like thermal radiation.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Okun’S Law

Okun’s Law is an empirically observed relationship between unemployment and economic output. Specifically, it suggests that for every 1% increase in the unemployment rate, a country's gross domestic product (GDP) will be roughly an additional 2% lower than its potential output. This relationship highlights the impact of unemployment on economic performance and emphasizes that higher unemployment typically indicates underutilization of resources in the economy.

The law can be expressed mathematically as:

ΔY≈−k⋅ΔU\Delta Y \approx -k \cdot \Delta UΔY≈−k⋅ΔU

where ΔY\Delta YΔY is the change in real GDP, ΔU\Delta UΔU is the change in the unemployment rate, and kkk is a constant that reflects the sensitivity of output to unemployment changes. Understanding Okun’s Law is crucial for policymakers as it helps in assessing the economic implications of labor market conditions and devising strategies to boost economic growth.

Plasmonic Hot Electron Injection

Plasmonic Hot Electron Injection refers to the process where hot electrons, generated by the decay of surface plasmons in metallic nanostructures, are injected into a nearby semiconductor or insulator. This occurs when incident light excites surface plasmons on the metal's surface, causing a rapid increase in energy among the electrons, leading to a non-equilibrium distribution of energy. These high-energy electrons can then overcome the energy barrier at the interface and be transferred into the adjacent material, which can significantly enhance photonic and electronic processes.

The efficiency of this injection is influenced by several factors, including the material properties, interface quality, and excitation wavelength. This mechanism has promising applications in photovoltaics, sensing, and catalysis, as it can facilitate improved charge separation and enhance overall device performance.

Dielectric Elastomer Actuators

Dielectric Elastomer Actuators (DEAs) sind innovative Technologien, die auf den Eigenschaften von elastischen Dielektrika basieren, um mechanische Bewegung zu erzeugen. Diese Aktuatoren bestehen meist aus einem dünnen elastischen Material, das zwischen zwei Elektroden eingebettet ist. Wenn eine elektrische Spannung angelegt wird, sorgt die resultierende elektrische Feldstärke dafür, dass sich das Material komprimiert oder dehnt. Der Effekt ist das Ergebnis der Elektrostriktion, bei der sich die Form des Materials aufgrund von elektrostatischen Kräften verändert. DEAs sind besonders attraktiv für Anwendungen in der Robotik und der Medizintechnik, da sie hohe Energieeffizienz, geringes Gewicht und die Fähigkeit bieten, sich flexibel zu bewegen. Ihre Funktionsweise kann durch die Beziehung zwischen Spannung VVV und Deformation ϵ\epsilonϵ beschrieben werden, wobei die Deformation proportional zur angelegten Spannung ist:

ϵ=k⋅V2\epsilon = k \cdot V^2ϵ=k⋅V2

wobei kkk eine Materialkonstante darstellt.

Nyquist Criterion

The Nyquist Criterion is a fundamental concept in control theory and signal processing, specifically in the analysis of feedback systems. It provides a method to determine the stability of a control system by examining its open-loop frequency response. According to the criterion, a system is stable if the Nyquist plot of its open-loop transfer function does not encircle the critical point −1+j0-1 + j0−1+j0 in the complex plane, where jjj is the imaginary unit.

To apply the criterion, one must consider:

  1. The number of encirclements of the point −1-1−1.
  2. The number of poles of the open-loop transfer function in the right half of the complex plane.

The relationship between these factors helps in assessing whether the closed-loop system will exhibit stable behavior. Thus, the Nyquist Criterion is an essential tool for engineers in designing stable and robust control systems.

Wavelet Transform

The Wavelet Transform is a mathematical technique used to analyze and represent data in a way that captures both frequency and location information. Unlike the traditional Fourier Transform, which only provides frequency information, the Wavelet Transform decomposes a signal into components that can have localized time and frequency characteristics. This is achieved by applying a set of functions called wavelets, which are small oscillating waves that can be scaled and translated.

The transformation can be expressed mathematically as:

W(a,b)=∫−∞∞f(t)ψa,b(t)dtW(a, b) = \int_{-\infty}^{\infty} f(t) \psi_{a,b}(t) dtW(a,b)=∫−∞∞​f(t)ψa,b​(t)dt

where W(a,b)W(a, b)W(a,b) represents the wavelet coefficients, f(t)f(t)f(t) is the original signal, and ψa,b(t)\psi_{a,b}(t)ψa,b​(t) is the wavelet function adjusted by scale aaa and translation bbb. The resulting coefficients can be used for various applications, including signal compression, denoising, and feature extraction in fields such as image processing and financial data analysis.

Bessel Function

Bessel Functions are a family of solutions to Bessel's differential equation, which commonly arise in problems involving cylindrical symmetry, such as heat conduction, wave propagation, and vibrations. They are denoted as Jn(x)J_n(x)Jn​(x) for integer orders nnn and are characterized by their oscillatory behavior and infinite series representation. The most common types are the first kind Jn(x)J_n(x)Jn​(x) and the second kind Yn(x)Y_n(x)Yn​(x), with Jn(x)J_n(x)Jn​(x) being finite at the origin for non-negative integer nnn.

In mathematical terms, Bessel Functions of the first kind can be expressed as:

Jn(x)=1π∫0πcos⁡(nθ−xsin⁡θ) dθJ_n(x) = \frac{1}{\pi} \int_0^\pi \cos(n \theta - x \sin \theta) \, d\thetaJn​(x)=π1​∫0π​cos(nθ−xsinθ)dθ

These functions are crucial in various fields such as physics and engineering, especially in the analysis of systems with cylindrical coordinates. Their properties, such as orthogonality and recurrence relations, make them valuable tools in solving partial differential equations.