Energy-Based Models (EBMs) are a class of probabilistic models that define a probability distribution over data by associating an energy value with each configuration of the variables. The fundamental idea is that lower energy configurations are more probable, while higher energy configurations are less likely. Formally, the probability of a configuration can be expressed as:
where is the energy function and is the partition function, which normalizes the distribution. EBMs can be applied in various domains, including computer vision, natural language processing, and generative modeling. They are particularly useful for capturing complex dependencies in data, making them versatile tools for tasks such as image generation and semi-supervised learning. By training these models to minimize the energy of the observed data, they can learn rich representations of the underlying structure in the data.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.