StudentsEducators

Fourier-Bessel Series

The Fourier-Bessel Series is a mathematical tool used to represent functions defined in a circular domain, typically a disk or a cylinder. This series expands a function in terms of Bessel functions, which are solutions to Bessel's differential equation. The general form of the Fourier-Bessel series for a function f(r,θ)f(r, \theta)f(r,θ), defined in a circular domain, is given by:

f(r,θ)=∑n=0∞AnJn(knr)cos⁡(nθ)+BnJn(knr)sin⁡(nθ)f(r, \theta) = \sum_{n=0}^{\infty} A_n J_n(k_n r) \cos(n \theta) + B_n J_n(k_n r) \sin(n \theta)f(r,θ)=n=0∑∞​An​Jn​(kn​r)cos(nθ)+Bn​Jn​(kn​r)sin(nθ)

where JnJ_nJn​ are the Bessel functions of the first kind, knk_nkn​ are the roots of the Bessel functions, and AnA_nAn​ and BnB_nBn​ are the Fourier coefficients determined by the function. This series is particularly useful in problems of heat conduction, wave propagation, and other physical phenomena where cylindrical or spherical symmetry is present, allowing for the effective analysis of boundary value problems. Moreover, it connects concepts from Fourier analysis and special functions, facilitating the solution of complex differential equations in engineering and physics.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Fiber Bragg Grating Sensors

Fiber Bragg Grating (FBG) sensors are advanced optical devices that utilize the principles of light reflection and wavelength filtering. They consist of a periodic variation in the refractive index of an optical fiber, which reflects specific wavelengths of light while allowing others to pass through. When external factors such as temperature or pressure change, the grating period alters, leading to a shift in the reflected wavelength. This shift can be quantitatively measured to monitor various physical parameters, making FBG sensors valuable in applications such as structural health monitoring and medical diagnostics. Their high sensitivity, small size, and resistance to electromagnetic interference make them ideal for use in harsh environments. Overall, FBG sensors provide an effective and reliable means of measuring changes in physical conditions through optical means.

Z-Algorithm String Matching

The Z-Algorithm is an efficient method for string matching, particularly useful for finding occurrences of a pattern within a text. It generates a Z-array, where each entry Z[i]Z[i]Z[i] represents the length of the longest substring starting from position iii in the concatenated string P+ P + \\P+ + T ,where, where ,where P isthepattern,is the pattern,isthepattern, T isthetext,and is the text, and \\isthetext,and is a unique delimiter that does not appear in either PPP or TTT. The algorithm processes the combined string in linear time, O(n+m)O(n + m)O(n+m), where nnn is the length of the text and mmm is the length of the pattern.

To use the Z-Algorithm for string matching, one can follow these steps:

  1. Concatenate the pattern and text with a unique delimiter.
  2. Compute the Z-array for the concatenated string.
  3. Identify positions in the text where the Z-value equals the length of the pattern, indicating a match.

The Z-Algorithm is particularly advantageous because of its linear time complexity, making it suitable for large texts and patterns.

Dirac String Trick Explanation

The Dirac String Trick is a conceptual tool used in quantum field theory to understand the quantization of magnetic monopoles. Proposed by physicist Paul Dirac, the trick addresses the issue of how a magnetic monopole can exist in a theoretical framework where electric charge is quantized. Dirac suggested that if a magnetic monopole exists, then the wave function of charged particles must be multi-valued around the monopole, leading to the introduction of a string-like object, or "Dirac string," that connects the monopole to the point charge. This string is not a physical object but rather a mathematical construct that represents the ambiguity in the phase of the wave function when encircling the monopole. The presence of the Dirac string ensures that the physical observables, such as electric charge, remain well-defined and quantized, adhering to the principles of gauge invariance.

In summary, the Dirac String Trick highlights the interplay between electric charge and magnetic monopoles, providing a framework for understanding their coexistence within quantum mechanics.

Hyperinflation Causes

Hyperinflation is an extreme and rapid increase in prices, typically exceeding 50% per month, which erodes the real value of the local currency. The causes of hyperinflation can generally be attributed to several key factors:

  1. Excessive Money Supply: Central banks may print more money to finance government spending, especially during crises. This increase in money supply without a corresponding increase in goods and services leads to inflation.

  2. Demand-Pull Inflation: When demand for goods and services outstrips supply, prices rise. This can occur in situations where consumer confidence is high and spending increases dramatically.

  3. Cost-Push Factors: Increases in production costs, such as wages and raw materials, can lead producers to raise prices to maintain profit margins. This can trigger a cycle of rising costs and prices.

  4. Loss of Confidence: When people lose faith in the stability of a currency, they may rush to spend it before it loses further value, exacerbating inflation. This is often seen in political instability or economic mismanagement.

Ultimately, hyperinflation results from a combination of these factors, leading to a vicious cycle that can devastate an economy if not addressed swiftly and effectively.

Bode Gain Margin

The Bode Gain Margin is a critical parameter in control theory that measures the stability of a feedback control system. It represents the amount of gain increase that can be tolerated before the system becomes unstable. Specifically, it is defined as the difference in decibels (dB) between the gain at the phase crossover frequency (where the phase shift is -180 degrees) and a gain of 1 (0 dB). If the gain margin is positive, the system is stable; if it is negative, the system is unstable.

To express this mathematically, if G(jω)G(j\omega)G(jω) is the open-loop transfer function evaluated at the frequency ω\omegaω where the phase is -180 degrees, the gain margin GMGMGM can be calculated as:

GM=20log⁡10(1∣G(jω)∣)GM = 20 \log_{10} \left( \frac{1}{|G(j\omega)|} \right)GM=20log10​(∣G(jω)∣1​)

where ∣G(jω)∣|G(j\omega)|∣G(jω)∣ is the magnitude of the transfer function at the phase crossover frequency. A higher gain margin indicates a more robust system, providing a greater buffer against variations in system parameters or external disturbances.

Production Function

A production function is a mathematical representation that describes the relationship between input factors and the output of goods or services in an economy or a firm. It illustrates how different quantities of inputs, such as labor, capital, and raw materials, are transformed into a certain level of output. The general form of a production function can be expressed as:

Q=f(L,K)Q = f(L, K)Q=f(L,K)

where QQQ is the quantity of output, LLL represents the amount of labor used, and KKK denotes the amount of capital employed. Production functions can exhibit various properties, such as diminishing returns—meaning that as more input is added, the incremental output gained from each additional unit of input may decrease. Understanding production functions is crucial for firms to optimize their resource allocation and improve efficiency, ultimately guiding decision-making regarding production levels and investment.