StudentsEducators

Fourier Transform Infrared Spectroscopy

Fourier Transform Infrared Spectroscopy (FTIR) is a powerful analytical technique used to obtain the infrared spectrum of absorption or emission of a solid, liquid, or gas. The method works by collecting spectral data over a wide range of wavelengths simultaneously, which is achieved through the use of a Fourier transform to convert the time-domain data into frequency-domain data. FTIR is particularly useful for identifying organic compounds and functional groups, as different molecular bonds absorb infrared light at characteristic frequencies. The resulting spectrum displays the intensity of absorption as a function of wavelength or wavenumber, allowing chemists to interpret the molecular structure. Some common applications of FTIR include quality control in manufacturing, monitoring environmental pollutants, and analyzing biological samples.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Eigenvalue Perturbation Theory

Eigenvalue Perturbation Theory is a mathematical framework used to study how the eigenvalues and eigenvectors of a linear operator change when the operator is subject to small perturbations. Given an operator AAA with known eigenvalues λn\lambda_nλn​ and eigenvectors vnv_nvn​, if we consider a perturbed operator A+ϵBA + \epsilon BA+ϵB (where ϵ\epsilonϵ is a small parameter and BBB represents the perturbation), the theory provides a systematic way to approximate the new eigenvalues and eigenvectors.

The first-order perturbation theory states that the change in the eigenvalue can be expressed as:

λn′=λn+ϵ⟨vn,Bvn⟩+O(ϵ2)\lambda_n' = \lambda_n + \epsilon \langle v_n, B v_n \rangle + O(\epsilon^2)λn′​=λn​+ϵ⟨vn​,Bvn​⟩+O(ϵ2)

where ⟨⋅,⋅⟩\langle \cdot, \cdot \rangle⟨⋅,⋅⟩ denotes the inner product. For the eigenvectors, the first-order correction can be represented as:

vn′=vn+∑m≠nϵ⟨vm,Bvn⟩λn−λmvm+O(ϵ2)v_n' = v_n + \sum_{m \neq n} \frac{\epsilon \langle v_m, B v_n \rangle}{\lambda_n - \lambda_m} v_m + O(\epsilon^2)vn′​=vn​+m=n∑​λn​−λm​ϵ⟨vm​,Bvn​⟩​vm​+O(ϵ2)

This theory is particularly useful in quantum mechanics, structural analysis, and various applied fields, where systems are often subjected to small changes.

Trie Space Complexity

The space complexity of a Trie data structure primarily depends on the number of keys stored and the character set used for the keys. In a Trie, each node represents a single character of a key, and the total number of nodes is influenced by both the number of keys nnn and the average length mmm of the keys. Thus, the space complexity can be expressed as O(n⋅m)O(n \cdot m)O(n⋅m), where nnn is the number of keys and mmm is the average length of those keys.

Moreover, each node typically contains a list or map of child nodes corresponding to the possible characters in the character set, which can further increase space usage, especially for large character sets. For instance, if the character set has kkk characters, then each node might have up to kkk child nodes. This leads to a potential worst-case space complexity of O(n⋅k⋅m)O(n \cdot k \cdot m)O(n⋅k⋅m) if all nodes are fully populated. Therefore, while Tries can be very efficient in terms of search time, they can also consume significant memory, particularly when dealing with a large number of keys or a broad character set.

Charge Transport In Semiconductors

Charge transport in semiconductors refers to the movement of charge carriers, primarily electrons and holes, within the semiconductor material. This process is essential for the functioning of various electronic devices, such as diodes and transistors. In semiconductors, charge carriers are generated through thermal excitation or doping, where impurities are introduced to create an excess of either electrons (n-type) or holes (p-type). The mobility of these carriers, which is influenced by factors like temperature and material quality, determines how quickly they can move through the lattice. The relationship between current density JJJ, electric field EEE, and carrier concentration nnn is described by the equation:

J=q(nμnE+pμpE)J = q(n \mu_n E + p \mu_p E)J=q(nμn​E+pμp​E)

where qqq is the charge of an electron, μn\mu_nμn​ is the mobility of electrons, and μp\mu_pμp​ is the mobility of holes. Understanding charge transport is crucial for optimizing semiconductor performance in electronic applications.

Superelasticity In Shape-Memory Alloys

Superelasticity is a remarkable phenomenon observed in shape-memory alloys (SMAs), which allows these materials to undergo significant strains without permanent deformation. This behavior is primarily due to a reversible phase transformation between the austenite and martensite phases, typically triggered by changes in temperature or stress. When an SMA is deformed above its austenite finish temperature, it can recover its original shape upon unloading, demonstrating a unique ability to return to its pre-deformed state.

Key features of superelasticity include:

  • High energy absorption: SMAs can absorb and release large amounts of energy, making them ideal for applications in seismic protection and shock absorbers.
  • Wide range of applications: These materials are utilized in various fields, including biomedical devices, robotics, and aerospace engineering.
  • Temperature dependence: The superelastic behavior is sensitive to the material's composition and the temperature, which influences the phase transformation characteristics.

In summary, superelasticity in shape-memory alloys combines mechanical flexibility with the ability to revert to a specific shape, enabling innovative solutions in engineering and technology.

Berry Phase

The Berry phase is a geometric phase acquired over the course of a cycle when a system is subjected to adiabatic (slow) changes in its parameters. When a quantum system is prepared in an eigenstate of a Hamiltonian that changes slowly, the state evolves not only in time but also acquires an additional phase factor, which is purely geometric in nature. This phase shift can be expressed mathematically as:

γ=i∮C⟨ψn(R)∣∇Rψn(R)⟩⋅dR\gamma = i \oint_C \langle \psi_n(\mathbf{R}) | \nabla_{\mathbf{R}} \psi_n(\mathbf{R}) \rangle \cdot d\mathbf{R}γ=i∮C​⟨ψn​(R)∣∇R​ψn​(R)⟩⋅dR

where γ\gammaγ is the Berry phase, ψn\psi_nψn​ is the eigenstate associated with the Hamiltonian parameterized by R\mathbf{R}R, and the integral is taken over a closed path CCC in parameter space. The Berry phase has profound implications in various fields such as quantum mechanics, condensed matter physics, and even in geometric phases in classical systems. Notably, it plays a significant role in phenomena like the quantum Hall effect and topological insulators, showcasing the deep connection between geometry and physical properties.

Kmp Algorithm

The KMP (Knuth-Morris-Pratt) algorithm is an efficient string matching algorithm that searches for occurrences of a word within a main text string. It improves upon the naive algorithm by avoiding unnecessary comparisons after a mismatch. The core idea behind KMP is to use information gained from previous character comparisons to skip sections of the text that are guaranteed not to match. This is achieved through a preprocessing step that constructs a longest prefix-suffix (LPS) array, which indicates the longest proper prefix of the substring that is also a suffix. As a result, the KMP algorithm runs in linear time, specifically O(n+m)O(n + m)O(n+m), where nnn is the length of the text and mmm is the length of the pattern.