StudentsEducators

Legendre Polynomial

Legendre Polynomials are a sequence of orthogonal polynomials that arise in solving problems in physics and engineering, particularly in the context of potential theory and quantum mechanics. They are denoted as Pn(x)P_n(x)Pn​(x), where nnn is a non-negative integer, and the polynomials are defined on the interval [−1,1][-1, 1][−1,1]. The Legendre polynomials can be generated using the following recursive relation:

P0(x)=1,P1(x)=x,Pn(x)=(2n−1)xPn−1(x)−(n−1)Pn−2(x)nP_0(x) = 1, \quad P_1(x) = x, \quad P_{n}(x) = \frac{(2n-1)xP_{n-1}(x) - (n-1)P_{n-2}(x)}{n}P0​(x)=1,P1​(x)=x,Pn​(x)=n(2n−1)xPn−1​(x)−(n−1)Pn−2​(x)​

These polynomials have several important properties, including orthogonality:

∫−11Pm(x)Pn(x) dx=0for m≠n\int_{-1}^{1} P_m(x) P_n(x) \, dx = 0 \quad \text{for } m \neq n∫−11​Pm​(x)Pn​(x)dx=0for m=n

Additionally, they satisfy the Legendre differential equation:

(1−x2)d2Pndx2−2xdPndx+n(n+1)Pn=0(1-x^2) \frac{d^2P_n}{dx^2} - 2x \frac{dP_n}{dx} + n(n+1)P_n = 0(1−x2)dx2d2Pn​​−2xdxdPn​​+n(n+1)Pn​=0

Legendre polynomials are widely used in applications such as solving Laplace's equation in spherical coordinates, performing numerical integration (Gauss-Legendre quadrature), and

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Stackelberg Model

The Stackelberg Model is a strategic game in economics that describes a market scenario where firms compete on output levels. In this model, one firm, known as the leader, makes its production decision first, while the other firm, called the follower, observes this decision and then chooses its own output level. This sequential decision-making process leads to a situation where the leader can potentially secure a competitive advantage by committing to a certain output level before the follower does.

The model is characterized by the following key elements:

  1. Leader and Follower: The leader sets its output first, influencing the follower's decision.
  2. Reaction Function: The follower's output is a function of the leader's output, demonstrating how the follower responds to the leader's choice.
  3. Equilibrium: The equilibrium in this model occurs when both firms have chosen their optimal output levels, considering the actions of the other.

Mathematically, if QLQ_LQL​ is the output of the leader and QFQ_FQF​ is the output of the follower, the total market output is Q=QL+QFQ = Q_L + Q_FQ=QL​+QF​, where the follower's output can be expressed as a reaction function QF=R(QL)Q_F = R(Q_L)QF​=R(QL​). The Stackelberg Model highlights the importance of strategic commitment in oligopolistic markets.

Robotic Kinematics

Robotic kinematics is the study of the motion of robots without considering the forces that cause this motion. It focuses on the relationships between the joints and links of a robot, determining the position, velocity, and acceleration of each component in relation to others. The kinematic analysis can be categorized into two main types: forward kinematics, which calculates the position of the end effector given the joint parameters, and inverse kinematics, which determines the required joint parameters to achieve a desired end effector position.

Mathematically, forward kinematics can be expressed as:

T=f(θ1,θ2,…,θn)\mathbf{T} = \mathbf{f}(\theta_1, \theta_2, \ldots, \theta_n)T=f(θ1​,θ2​,…,θn​)

where T\mathbf{T}T is the transformation matrix representing the position and orientation of the end effector, and θi\theta_iθi​ are the joint variables. Inverse kinematics, on the other hand, often requires solving non-linear equations and can have multiple solutions or none at all, making it a more complex problem. Thus, robotic kinematics plays a crucial role in the design and control of robotic systems, enabling them to perform precise movements in a variety of applications.

Lorenz Curve

The Lorenz Curve is a graphical representation of income or wealth distribution within a population. It plots the cumulative percentage of total income received by the cumulative percentage of the population, highlighting the degree of inequality in distribution. The curve is constructed by plotting points where the x-axis represents the cumulative share of the population (from the poorest to the richest) and the y-axis shows the cumulative share of income. If income were perfectly distributed, the Lorenz Curve would be a straight diagonal line at a 45-degree angle, known as the line of equality. The further the Lorenz Curve lies below this line, the greater the level of inequality in income distribution. The area between the line of equality and the Lorenz Curve can be quantified using the Gini coefficient, a common measure of inequality.

Metamaterial Cloaking Applications

Metamaterials are engineered materials with unique properties that allow them to manipulate electromagnetic waves in ways that natural materials cannot. One of the most fascinating applications of metamaterials is cloaking, where objects can be made effectively invisible to radar or other detection methods. This is achieved by bending electromagnetic waves around the object, thereby preventing them from reflecting back to the source.

There are several potential applications for metamaterial cloaking, including:

  • Military stealth technology: Concealing vehicles or installations from radar detection.
  • Telecommunications: Protecting sensitive equipment from unwanted signals or interference.
  • Medical imaging: Improving the clarity of images by reducing background noise.

While the technology is still in its developmental stages, the implications for security, privacy, and even consumer electronics could be transformative.

Economic Rent

Economic rent refers to the payment to a factor of production in excess of what is necessary to keep that factor in its current use. This concept is commonly applied to land, labor, and capital, where the earnings exceed the minimum required to maintain the factor's current employment. For example, if a piece of land generates a profit of $10,000 but could be used elsewhere for $7,000, the economic rent is $3,000. This excess can be attributed to the unique characteristics of the resource or its limited availability. Economic rent is crucial in understanding resource allocation and income distribution within an economy, as it highlights the benefits accrued to owners of scarce resources.

Kaldor’S Facts

Kaldor’s Facts, benannt nach dem britischen Ökonomen Nicholas Kaldor, sind eine Reihe von empirischen Beobachtungen, die sich auf das langfristige Wirtschaftswachstum und die Produktivität beziehen. Diese Fakten beinhalten insbesondere zwei zentrale Punkte: Erstens, das Wachstumsraten des Produktionssektors tendieren dazu, im Laufe der Zeit stabil zu bleiben, unabhängig von den wirtschaftlichen Zyklen. Zweitens, dass die Kapitalproduktivität in der Regel konstant bleibt, was bedeutet, dass der Output pro Einheit Kapital über lange Zeiträume hinweg relativ stabil ist.

Diese Beobachtungen legen nahe, dass technologische Fortschritte und Investitionen in Kapitalgüter entscheidend für das Wachstum sind. Kaldor argumentierte, dass diese Stabilitäten für die Entwicklung von ökonomischen Modellen und die Analyse von Wirtschaftspolitiken von großer Bedeutung sind. Insgesamt bieten Kaldor's Facts wertvolle Einsichten in das Verständnis der Beziehung zwischen Kapital, Arbeit und Wachstum in einer Volkswirtschaft.