StudentsEducators

Nash Equilibrium Mixed Strategy

A Nash Equilibrium Mixed Strategy occurs in game theory when players randomize their strategies in such a way that no player can benefit by unilaterally changing their strategy while the others keep theirs unchanged. In this equilibrium, each player's strategy is a probability distribution over possible actions, rather than a single deterministic choice. This is particularly relevant in games where pure strategies do not yield a stable outcome.

For example, consider a game where two players can choose either Strategy A or Strategy B. If neither player can predict the other’s choice, they may both choose to randomize their strategies, assigning probabilities ppp and 1−p1-p1−p to their actions. A mixed strategy Nash equilibrium exists when these probabilities are such that each player is indifferent between their possible actions, meaning the expected payoff from each action is equal. Mathematically, this can be expressed as:

E(A)=E(B)E(A) = E(B)E(A)=E(B)

where E(A)E(A)E(A) and E(B)E(B)E(B) are the expected payoffs for each strategy.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Cayley-Hamilton

The Cayley-Hamilton theorem states that every square matrix satisfies its own characteristic polynomial. For a given n×nn \times nn×n matrix AAA, the characteristic polynomial p(λ)p(\lambda)p(λ) is defined as

p(λ)=det⁡(A−λI)p(\lambda) = \det(A - \lambda I)p(λ)=det(A−λI)

where III is the identity matrix and λ\lambdaλ is a scalar. According to the theorem, if we substitute the matrix AAA into its characteristic polynomial, we obtain

p(A)=0p(A) = 0p(A)=0

This means that if you compute the polynomial using the matrix AAA in place of the variable λ\lambdaλ, the result will be the zero matrix. The Cayley-Hamilton theorem has important implications in various fields, such as control theory and systems dynamics, where it is used to solve differential equations and analyze system stability.

Quantum Superposition

Quantum superposition is a fundamental principle of quantum mechanics that posits that a quantum system can exist in multiple states at the same time until it is measured. This concept contrasts with classical physics, where an object is typically found in one specific state. For instance, a quantum particle, like an electron, can be in a superposition of being in multiple locations simultaneously, represented mathematically as a linear combination of its possible states. The superposition is described using wave functions, where the probability of finding the particle in a certain state is determined by the square of the amplitude of its wave function. When a measurement is made, the superposition collapses, and the system assumes one of the possible states, a phenomenon often illustrated by the famous thought experiment known as Schrödinger's cat. Thus, quantum superposition not only challenges our classical intuitions but also underlies many applications in quantum computing and quantum cryptography.

Game Strategy

A game strategy refers to a comprehensive plan or approach that a player employs to achieve their objectives in a game, whether it be a board game, video game, or a competitive sport. Effective strategies often involve analyzing the game's rules, understanding opponents' behaviors, and making decisions that maximize one's chances of winning. Players may utilize various techniques, such as bluffing, resource management, or positioning, depending on the type of game. Moreover, strategies can be categorized into offensive and defensive approaches, each serving different purposes based on the game's context. Ultimately, a successful game strategy not only focuses on one's own actions but also anticipates and counters the moves of opponents, creating a dynamic interplay of tactics and counter-tactics.

Schwarzschild Radius

The Schwarzschild radius is a fundamental concept in the field of general relativity, representing the radius of a sphere such that, if all the mass of an object were to be compressed within that sphere, the escape velocity would equal the speed of light. This radius is particularly significant for black holes, as it defines the event horizon—the boundary beyond which nothing can escape the gravitational pull of the black hole. The formula for calculating the Schwarzschild radius RsR_sRs​ is given by:

Rs=2GMc2R_s = \frac{2GM}{c^2}Rs​=c22GM​

where GGG is the gravitational constant, MMM is the mass of the object, and ccc is the speed of light in a vacuum. For example, the Schwarzschild radius of the Earth is approximately 9 millimeters, while for a stellar black hole, it can be several kilometers. Understanding the Schwarzschild radius is crucial for studying the behavior of objects under intense gravitational fields and the nature of black holes in the universe.

Cobweb Model

The Cobweb Model is an economic theory that illustrates how supply and demand can lead to cyclical fluctuations in prices and quantities in certain markets, particularly in agricultural goods. It is based on the premise that producers make decisions based on past prices rather than current ones, resulting in a lagged response to changes in demand. When prices rise, producers increase supply, but due to the time needed for production, the supply may not meet the demand immediately, causing prices to fluctuate. This can create a cobweb-like pattern in a graph where the price and quantity oscillate over time, often converging towards equilibrium or diverging indefinitely. Key components of this model include:

  • Lagged Supply Response: Suppliers react to previous price levels.
  • Price Fluctuations: Prices may rise and fall in cycles.
  • Equilibrium Dynamics: The model can show convergence or divergence to a stable price.

Understanding the Cobweb Model helps in analyzing market dynamics, especially in industries where production takes time and is influenced by past price signals.

Stochastic Discount Factor Asset Pricing

Stochastic Discount Factor (SDF) Asset Pricing is a fundamental concept in financial economics that provides a framework for valuing risky assets. The SDF, often denoted as mtm_tmt​, represents the present value of future cash flows, adjusting for risk and time preferences. This approach links the expected returns of an asset to its risk through the equation:

E[mtRt]=1E[m_t R_t] = 1E[mt​Rt​]=1

where RtR_tRt​ is the return on the asset. The SDF is derived from utility maximization principles, indicating that investors require a higher expected return for bearing additional risk. By utilizing the SDF, one can derive asset prices that reflect both the time value of money and the risk associated with uncertain future cash flows, making it a versatile tool in asset pricing models. This method also supports the no-arbitrage condition, ensuring that there are no opportunities for riskless profit in the market.