StudierendeLehrende

Supply Shocks

Ein Supply Shock bezeichnet eine unerwartete Veränderung des Angebots auf einem Markt, die die Produktionskosten oder die Verfügbarkeit von Gütern beeinflusst. Solche Schocks können sowohl positiv als auch negativ sein. Negative Supply Shocks, wie Naturkatastrophen oder politische Unruhen, führen oft zu einem Rückgang des Angebots, was zu höheren Preisen und einer potenziellen Inflation führen kann. Im Gegensatz dazu können positive Supply Shocks, wie technologische Fortschritte oder plötzliche Anstiege in der Rohstoffproduktion, das Angebot erhöhen, was zu niedrigeren Preisen und einer Verbesserung der wirtschaftlichen Bedingungen führen kann. Supply Shocks haben weitreichende Auswirkungen auf die Gesamtwirtschaft, da sie die Produktionskapazitäten, die Preisniveaus und letztendlich das Wirtschaftswachstum beeinflussen können.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Protein-Ligand-Docking

Protein-Ligand Docking ist eine computergestützte Methode, die in der Strukturbiologie und der Arzneimitteldiscovery verwendet wird, um die Wechselwirkungen zwischen einem Protein und einem Liganden (z. B. einem kleinen Molekül oder einem Medikament) zu untersuchen. Ziel des Docking-Prozesses ist es, die bevorzugte Bindungsposition und -konformation des Liganden im aktiven Zentrum des Proteins zu bestimmen. Dies geschieht durch die Berechnung von Energieprofilen, die auf der Molekülgeometrie und den intermolekularen Kräften basieren.

Die Hauptschritte im Docking-Prozess umfassen:

  1. Vorbereitung der Protein- und Ligandstrukturen.
  2. Docking-Algorithmus, der verschiedene Konformationen des Liganden generiert und deren Bindungsenergie bewertet.
  3. Auswertung der Ergebnisse, um die besten Bindungsmodi zu identifizieren.

Durch die Analyse dieser Wechselwirkungen können Wissenschaftler Hypothesen über die Wirkmechanismen von Medikamenten aufstellen und neue therapeutische Ansätze entwickeln.

VCO-Frequenzsynthese

VCO-Frequenzsynthese ist ein Verfahren zur Erzeugung von präzisen Frequenzen durch die Verwendung eines Spannungsgesteuerten Oszillators (VCO). Der VCO erzeugt eine Ausgangsfrequenz, die in direktem Verhältnis zur angelegten Spannung steht, was bedeutet, dass die Frequenz durch Variationen der Eingangsspannung kontrolliert werden kann. Um verschiedene Frequenzen zu erzeugen, wird häufig ein Phasenregelschleifen (PLL)-System eingesetzt, das den VCO mit einer Referenzfrequenz verknüpft, um die gewünschte Ausgangsfrequenz zu erreichen.

Der Syntheseprozess kann in folgende Schritte unterteilt werden:

  1. Eingangssignal: Eine Referenzfrequenz wird bereitgestellt.
  2. Phasenvergleich: Der Phasenregler vergleicht die Phasen der Referenzfrequenz und der VCO-Ausgangsfrequenz.
  3. Steuerungssignal: Basierend auf dem Phasenunterschied wird ein Steuerungssignal generiert, um die Eingangs-DC-Spannung des VCO zu modifizieren.
  4. Frequenzausgabe: Der VCO passt seine Frequenz an die gewünschte Frequenz an.

Durch diese Methode können sehr präzise und stabile Frequenzen

LDPC-Decodierung

LDPC (Low-Density Parity-Check) Decoding ist ein Verfahren zur Fehlerkorrektur, das auf speziell gestalteten Codes basiert, die eine geringe Dichte von Paritätsprüfungen aufweisen. Diese Codes bestehen aus einer großen Anzahl von Variablen, die durch eine relativ kleine Anzahl von Paritätsprüfungen miteinander verbunden sind, was zu einer sparsamen Struktur führt. Beim Decoding wird ein iterativer Algorithmus verwendet, der typischerweise den Sum-Product-Algorithmus oder den Bit-Flipping-Algorithmus umfasst, um die Wahrscheinlichkeit zu maximieren, dass die empfangenen Daten korrekt sind.

Der Prozess beginnt mit der Initialisierung der Variablen und dem Auslösen von Nachrichten zwischen den Knoten in der Paritätsprüfmatrix. Die Iterationen werden fortgesetzt, bis entweder alle Paritätsprüfungen erfüllt sind oder eine maximale Anzahl von Iterationen erreicht ist. Die Effizienz und Robustheit von LDPC-Codes machen sie besonders geeignet für moderne Kommunikationssysteme, wie z.B. in Satellitenkommunikation und Drahtlosnetzwerken.

Tunneling-Feldeffekttransistor

Der Tunneling Field-Effect Transistor (TFET) ist ein innovativer Transistortyp, der auf dem Prinzip des quantenmechanischen Tunnels basiert. Im Gegensatz zu herkömmlichen MOSFETs, die auf thermischer Erregung beruhen, nutzen TFETs den Tunneling-Effekt, um Elektronen durch eine energetische Barriere zu bewegen. Dies ermöglicht eine geringere Betriebsspannung und höhere Energieeffizienz, was sie besonders attraktiv für moderne Anwendungen in der Nanoelektronik macht.

Der TFET besteht typischerweise aus einer p-n-Übergangsstruktur, wobei der Tunneling-Effekt zwischen den beiden Bereichen auftritt, wenn eine geeignete Spannung anliegt. Die mathematische Beziehung, die das Verhalten des TFET beschreibt, kann durch den Stromfluss III in Abhängigkeit von der Gate-Spannung VGSV_{GS}VGS​ und der Drain-Spannung VDSV_{DS}VDS​ dargestellt werden:

I∝(VGS−Vth)n⋅e−EgkTI \propto (V_{GS} - V_{th})^n \cdot e^{-\frac{E_g}{kT}}I∝(VGS​−Vth​)n⋅e−kTEg​​

Hierbei steht VthV_{th}Vth​ für die Schwellenspannung, EgE_gEg​ für die Bandlücke, kkk für die Boltzmann-Konstante und TTT für die

Graphenoxid-Membranfiltration

Die Graphenoxid-Membranfiltration ist eine innovative Technologie, die auf der Verwendung von Graphenoxid-Membranen basiert, um Flüssigkeiten zu filtern. Diese Membranen zeichnen sich durch ihre hohe Permeabilität und selektive Durchlässigkeit aus, was bedeutet, dass sie bestimmte Moleküle oder Ionen effizient passieren lassen, während sie andere zurückhalten.

Ein wesentlicher Vorteil dieser Technologie ist ihre Fähigkeit, Nanopartikel, Salze und organische Verunreinigungen mit hoher Effizienz zu entfernen. Der Prozess beruht auf der Schichtung von Graphenoxid, das in wässriger Lösung dispersiert wird, und bildet so eine ultradünne Schicht, die als Filter wirkt. Während der Filtration können die Poren der Membran so abgestimmt werden, dass sie gezielt bestimmte Größen und Eigenschaften von Molekülen trennen.

Insgesamt bietet die Graphenoxid-Membranfiltration vielversprechende Anwendungen in der Wasseraufbereitung, der Abwasserbehandlung und der Lebensmittelindustrie, indem sie die Effizienz und Nachhaltigkeit der Filtrationsprozesse erheblich verbessert.

Zellfreie synthetische Biologie

Cell-Free Synthetic Biology ist ein innovativer Ansatz innerhalb der synthetischen Biologie, der es ermöglicht, biologische Prozesse ohne lebende Zellen zu gestalten und zu steuern. Bei dieser Methode werden recombinante DNA, Proteine und andere zelluläre Komponenten in einer vitro-Umgebung genutzt, um biologische Systeme zu konstruieren und zu analysieren. Ein wesentlicher Vorteil dieser Technik ist die Flexibilität: Forscher können gezielt Gene und Proteine kombinieren, ohne die Einschränkungen, die durch zelluläre Interaktionen oder Wachstumsbedingungen entstehen. Dies eröffnet neue Möglichkeiten für die Entwicklung von therapeutischen Proteinen, Biosensoren und sogar biochemischen Produktionsprozessen. Cell-Free Systeme sind zudem oft kostengünstiger und schneller in der Entwicklung, da sie die langwierigen Schritte des Zellwachstums und der Transformation umgehen.