StudierendeLehrende

Antibody Engineering

Antibody Engineering ist ein innovativer Bereich der Biotechnologie, der sich mit der Modifikation und Optimierung von Antikörpern beschäftigt, um deren Wirksamkeit und Spezifität zu erhöhen. Durch verschiedene Techniken wie künstliche Selektion, Gen-Engineering und Protein-Design können Forscher Antikörper entwickeln, die gezielt an bestimmte Antigene binden. Diese modifizierten Antikörper finden Anwendung in der Diagnostik, der Krebsbehandlung und Immuntherapien. Zu den häufigsten Methoden gehören die Humane Antikörperbibliotheken und Phagen-Display-Techniken, die es ermöglichen, eine Vielzahl von Antikörpern schnell zu testen und die besten Kandidaten auszuwählen. Insgesamt bietet Antibody Engineering das Potenzial, neue therapeutische Ansätze zu entwickeln und bestehende Behandlungen zu verbessern.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Hart-Weich-Magnetisch

Der Begriff Hard-Soft Magnetic bezieht sich auf Materialien, die sowohl harte als auch weiche magnetische Eigenschaften aufweisen. Harte magnetische Materialien haben eine hohe Koerzitivität, was bedeutet, dass sie nach dem Entfernen eines externen Magnetfeldes ihre Magnetisierung beibehalten. Diese Materialien werden häufig in Permanentmagneten verwendet. Im Gegensatz dazu besitzen weiche magnetische Materialien eine niedrige Koerzitivität und verlieren ihre Magnetisierung schnell, wenn das äußere Magnetfeld entfernt wird. Diese Eigenschaften machen sie ideal für Anwendungen wie Transformatoren und Elektromotoren.

In vielen modernen Technologien werden Kombinationen aus harten und weichen magnetischen Materialien eingesetzt, um die gewünschten magnetischen Eigenschaften zu optimieren und die Effizienz von elektrischen Geräten zu erhöhen.

Kalman-Filter

Der Kalman Filter ist ein mathematisches Verfahren, das zur Schätzung des Zustands eines dynamischen Systems verwendet wird, das von Rauschen und Unsicherheiten betroffen ist. Er kombiniert Messdaten mit einem modellenbasierten Ansatz, um die beste Schätzung des Systemzustands zu liefern. Der Filter arbeitet in zwei Hauptschritten: dem Vorhersageschritt, in dem der zukünftige Zustand basierend auf dem aktuellen Zustand und dem Systemmodell geschätzt wird, und dem Aktualisierungsschritt, in dem diese Schätzung durch neue Messungen verfeinert wird.

Mathematisch wird der Zustand xkx_kxk​ des Systems zur Zeit kkk durch die Gleichung

xk=Axk−1+Buk+wkx_k = A x_{k-1} + B u_k + w_kxk​=Axk−1​+Buk​+wk​

beschrieben, wobei AAA die Zustandsübergangsmatrix, BBB die Steuerungsmatrix, uku_kuk​ die Steuerungseingaben und wkw_kwk​ das Prozessrauschen ist. Die Schätzung wird dann mit den Beobachtungen zkz_kzk​ aktualisiert, die durch

zk=Hxk+vkz_k = H x_k + v_kzk​=Hxk​+vk​

beschrieben werden, wobei HHH die Beobachtungsmatrix und vkv_kvk​ das Messrauschen darstellt. Der Kalman Filter findet breite Anwendung in verschiedenen Bereichen, darunter

Carnot-Limitierung

Die Carnot Limitation beschreibt die theoretischen Grenzen der Effizienz von Wärmekraftmaschinen, die zwischen zwei Temperaturreservoirs arbeiten. Gemäß dem Carnot-Theorem kann die maximale Effizienz η\etaη einer solchen Maschine durch die Temperaturen der beiden Reservoirs ausgedrückt werden:

η=1−TCTH\eta = 1 - \frac{T_C}{T_H}η=1−TH​TC​​

Hierbei ist TCT_CTC​ die Temperatur des kalten Reservoirs und THT_HTH​ die Temperatur des heißen Reservoirs, beide in Kelvin. Diese Beziehung zeigt, dass die Effizienz nur dann steigt, wenn die Temperaturdifferenz zwischen den Reservoirs erhöht wird. Wichtig ist, dass keine reale Maschine die Carnot-Effizienz erreichen kann, da immer Verluste durch Reibung, Wärmeleitung und andere Faktoren auftreten. Die Carnot-Limitation bildet somit eine fundamentale Grundlage für das Verständnis thermodynamischer Prozesse und ist entscheidend für die Entwicklung effizienter Energiesysteme.

Shapley-Wert kooperative Spiele

Der Shapley-Wert ist ein Konzept aus der Spieltheorie, das verwendet wird, um den Beitrag einzelner Spieler in kooperativen Spielen zu quantifizieren. In einem kooperativen Spiel schließen sich Spieler zusammen, um gemeinsam einen Gewinn zu erzielen, und der Shapley-Wert hilft dabei, diesen Gewinn fair zwischen den Spielern zu verteilen. Der Wert basiert auf der Idee, dass jeder Spieler einen unterschiedlichen Beitrag zu verschiedenen Koalitionen leistet, und berechnet den durchschnittlichen marginalen Nutzen, den ein Spieler für jede mögliche Koalition bringt.

Mathematisch wird der Shapley-Wert für einen Spieler iii als folgt definiert:

ϕi(v)=∑S⊆N∖{i}∣S∣!⋅(∣N∣−∣S∣−1)!∣N∣!⋅(v(S∪{i})−v(S))\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! \cdot (|N| - |S| - 1)!}{|N|!} \cdot (v(S \cup \{i\}) - v(S))ϕi​(v)=S⊆N∖{i}∑​∣N∣!∣S∣!⋅(∣N∣−∣S∣−1)!​⋅(v(S∪{i})−v(S))

Hierbei ist v(S)v(S)v(S) der Wert, den die Koalition SSS erzielt, und NNN ist die Menge aller Spieler. Der Shapley-Wert hat zahlreiche Anwendungen in verschiedenen Bereichen, einschließlich Wirtschaft, Politik und Ökologie, da er eine faire und ausgewogene Methode zur Verteilung von Ressourcen und Gewinnen bietet.

Dunkle Materie Kandidaten

Dunkle Materie ist ein mysteriöses Material, das etwa 27 % des Universums ausmacht und nicht direkt beobachtbar ist, da es keine elektromagnetische Strahlung emittiert. Um die Eigenschaften und die Natur der dunklen Materie zu verstehen, haben Wissenschaftler verschiedene Kandidaten vorgeschlagen, die diese Materie ausmachen könnten. Zu den prominentesten gehören:

  • WIMPs (Weakly Interacting Massive Particles): Diese hypothetischen Teilchen interagieren nur schwach mit normaler Materie und könnten in großen Mengen im Universum vorhanden sein.
  • Axionen: Sehr leichte Teilchen, die aus bestimmten physikalischen Theorien hervorgehen und in der Lage sein könnten, die Eigenschaften der Dunklen Materie zu erklären.
  • Sterile Neutrinos: Eine Form von Neutrinos, die nicht an den Standardwechselwirkungen teilnehmen, aber dennoch zur Gesamtmasse des Universums beitragen könnten.

Die Suche nach diesen Kandidaten erfolgt sowohl durch astronomische Beobachtungen als auch durch experimentelle Ansätze in Laboren, wo versucht wird, die dunkle Materie direkt nachzuweisen oder ihre Auswirkungen zu messen.

Solow-Wachstum

Das Solow-Wachstumsmodell, entwickelt von Robert Solow in den 1950er Jahren, ist ein grundlegendes Modell der neoklassischen Wachstumstheorie, das erklärt, wie Kapitalakkumulation, Arbeitskräfte und technologische Entwicklung das Wirtschaftswachstum beeinflussen. Es postuliert, dass das langfristige Wachstum einer Volkswirtschaft hauptsächlich durch den technischen Fortschritt und die Erhöhung des Humankapitals bestimmt wird, während die Rolle des physischen Kapitals im Wachstumsgeschehen abnimmt.

Im Modell wird die Produktionsfunktion oft in der Form Y=F(K,L)Y = F(K, L)Y=F(K,L) dargestellt, wobei YYY der Output, KKK das Kapital und LLL die Arbeitskräfte sind. Ein zentrales Konzept des Modells ist die neue Produktionsfunktion, die die abnehmenden Erträge des Kapitals berücksichtigt und aufzeigt, dass in einer stabilen Volkswirtschaft das Kapital pro Arbeiter konstant bleibt, wenn das Wachstum des Kapitals und der Arbeitskräfte im Gleichgewicht sind.

Zusammenfassend lässt sich sagen, dass das Solow-Wachstumsmodell wichtige Einsichten in die Faktoren gibt, die das wirtschaftliche Wachstum über lange Zeiträume beeinflussen, und die Notwendigkeit von technologischem Fortschritt für nachhaltiges Wachstum hervorhebt.