StudierendeLehrende

Pigovian Tax

Eine Pigovian Tax ist eine Steuer, die eingeführt wird, um negative externe Effekte von wirtschaftlichen Aktivitäten zu internalisieren. Diese Steuer zielt darauf ab, die Kosten, die durch externe Effekte wie Umweltverschmutzung entstehen, auf die Verursacher zu übertragen. Beispielsweise könnte eine Steuer auf CO2-Emissionen erhoben werden, um die Unternehmen zu Anreizen zu bewegen, umweltfreundlichere Technologien zu entwickeln.

Die Idee hinter dieser Steuer ist, dass der Preis eines Gutes die gesellschaftlichen Kosten widerspiegeln sollte, was durch die Formel P=C+EP = C + EP=C+E (wobei PPP der Preis, CCC die privaten Kosten und EEE die externen Kosten sind) verdeutlicht wird. Dadurch wird der Verbrauch von schädlichen Gütern verringert und die Ressourcenallokation effizienter gestaltet. Insgesamt kann eine Pigovian Tax dazu beitragen, das gesellschaftliche Wohlergehen zu maximieren und gleichzeitig umweltfreundliche Praktiken zu fördern.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Borel-Cantelli-Lemma

Das Borel-Cantelli-Lemma ist ein zentrales Resultat in der Wahrscheinlichkeitstheorie, das sich mit der Konvergenz von Ereignissen in einer Folge von Zufallsvariablen beschäftigt. Es besagt, dass wenn A1,A2,A3,…A_1, A_2, A_3, \ldotsA1​,A2​,A3​,… eine Folge von Ereignissen ist und die Summe der Wahrscheinlichkeiten dieser Ereignisse endlich ist, d.h.

∑n=1∞P(An)<∞,\sum_{n=1}^{\infty} P(A_n) < \infty,n=1∑∞​P(An​)<∞,

dann tritt das Ereignis AnA_nAn​ nur endlich oft mit Wahrscheinlichkeit 1 auf. Umgekehrt, wenn die AnA_nAn​ unabhängig sind und

∑n=1∞P(An)=∞,\sum_{n=1}^{\infty} P(A_n) = \infty,n=1∑∞​P(An​)=∞,

dann tritt AnA_nAn​ mit Wahrscheinlichkeit 1 unendlich oft auf. Dieses Lemma verbindet somit die Konzepte der Wahrscheinlichkeit und der Konvergenz und ist grundlegend für die Analyse von Zufallsprozessen.

Vektorregelung von Wechselstrommotoren

Die Vektorkontrolle (oder auch Feldorientierte Steuerung) von Wechselstrommotoren ist eine fortschrittliche Regelungstechnik, die es ermöglicht, die Drehmoment- und Flusskontrolle von Motoren präzise zu steuern. Diese Methode basiert auf der Umwandlung der Motorstromkomponenten in ein drehendes Koordinatensystem, was eine separate Kontrolle von Drehmoment und Fluss ermöglicht. Die Grundidee ist, den Motorstrom in zwei orthogonale Komponenten zu zerlegen: die d-q-Achsen (direkte und quadratische Achse). Hierdurch wird es möglich, den Motor wie einen Gleichstrommotor zu steuern, was eine bessere Dynamik und Effizienz bietet.

Um dies zu realisieren, werden die folgenden Schritte durchgeführt:

  1. Messung der Motorparameter: Daten wie Drehmoment, Fluss und Geschwindigkeit werden erfasst.
  2. Transformation: Die Ströme werden von der dreiphasigen in die d-q-Koordinatenform umgewandelt.
  3. Regelung: Über PI-Regler werden die d-q-Ströme gesteuert, um gewünschte Werte zu erreichen.
  4. Rücktransformation: Die d-q-Ströme werden zurück in die dreiphasige Form umgewandelt, um den Motor anzutreiben.

Diese Technik führt

Resistive Ram

Resistive Ram (ReRAM oder RRAM) ist eine nicht-flüchtige Speichertechnologie, die auf der Änderung des elektrischen Widerstands eines Materials basiert, um Daten zu speichern. Im Gegensatz zu herkömmlichen Speichertechnologien wie DRAM oder Flash, die auf Ladungsspeicherung beruhen, nutzt ReRAM die Fähigkeit bestimmter Materialien, ihre Leitfähigkeit durch Anwendung eines elektrischen Stroms zu verändern. Diese Veränderungen im Widerstand können in zwei Zustände unterteilt werden: einen hohen Widerstandszustand (HRS) und einen niedrigen Widerstandszustand (LRS).

Die Vorteile von ReRAM umfassen hohe Geschwindigkeit, geringen Energieverbrauch und hohe Dichte, was es zu einem vielversprechenden Kandidaten für zukünftige Speicherlösungen macht. Zusätzlich ermöglicht die Technologie eine potenzielle Integration in neuromorphe Systeme, die auf der Nachahmung von neuronalen Netzwerken basieren, was die Entwicklung von intelligenten Speichersystemen fördert.

Biophysikalische Modellierung

Biophysical Modeling ist ein interdisziplinäres Forschungsfeld, das physikalische Prinzipien und biologische Systeme kombiniert, um komplexe biologische Prozesse zu verstehen und vorherzusagen. Diese Modelle nutzen mathematische Gleichungen und Simulationstechniken, um die Wechselwirkungen zwischen biologischen Molekülen, Zellen und Organismen zu beschreiben. Durch die Anwendung von Konzepten aus der Physik, Chemie und Biologie können Forscher spezifische Fragen zu Dynamiken, wie z.B. der Proteinfaltungsmechanismen oder der Stoffwechselwege, beantworten. Biophysikalische Modelle sind entscheidend in der Entwicklung von Medikamenten, der Analyse von biologischen Daten und der Untersuchung von Krankheiten. Sie ermöglichen es Wissenschaftlern, Hypothesen zu testen und neue Erkenntnisse über die Funktionsweise lebender Systeme zu gewinnen.

Runge-Kutta

Das Runge-Kutta-Verfahren ist eine weit verbreitete Methode zur numerischen Lösung gewöhnlicher Differentialgleichungen. Es handelt sich um ein iteratives Verfahren, das die Lösung schrittweise approximiert, indem es mehrere Zwischenschritte innerhalb jedes Zeitintervalls berechnet. Die bekannteste Form ist das klassische 4. Ordnung Runge-Kutta-Verfahren, das vier Steigungen (K-Werte) pro Schritt verwendet, um eine genauere Schätzung des nächsten Punktes zu erhalten.

Die allgemeinen Schritte für das 4. Ordnung Runge-Kutta-Verfahren lauten:

  1. Berechne die ersten K-Werte:

    • k1=h⋅f(tn,yn)k_1 = h \cdot f(t_n, y_n)k1​=h⋅f(tn​,yn​)
    • k2=h⋅f(tn+h2,yn+k12)k_2 = h \cdot f(t_n + \frac{h}{2}, y_n + \frac{k_1}{2})k2​=h⋅f(tn​+2h​,yn​+2k1​​)
    • k3=h⋅f(tn+h2,yn+k22)k_3 = h \cdot f(t_n + \frac{h}{2}, y_n + \frac{k_2}{2})k3​=h⋅f(tn​+2h​,yn​+2k2​​)
    • k4=h⋅f(tn+h,yn+k3)k_4 = h \cdot f(t_n + h, y_n + k_3)k4​=h⋅f(tn​+h,yn​+k3​)
  2. Berechne den nächsten Wert:

Stochastischer Abschlag

Der stochastische Diskontierungsfaktor ist ein Konzept in der Finanzwirtschaft, das verwendet wird, um den Zeitwert von Geld zu bewerten, insbesondere unter Unsicherheit. Er beschreibt, wie zukünftige Zahlungen oder Cashflows in der Gegenwart bewertet werden, wobei Unsicherheit über zukünftige Ereignisse berücksichtigt wird. Dies wird häufig durch einen diskontierenden Faktor DtD_tDt​ dargestellt, der die Wahrscheinlichkeit und den Wert zukünftiger Cashflows in einem stochastischen Rahmen berücksichtigt.

Mathematisch kann der stochastische Diskontierungsfaktor als Dt=e−rtTD_t = e^{-r_t T}Dt​=e−rt​T formuliert werden, wobei rtr_trt​ die zeitabhängige, stochastische Diskontierungsrate ist und TTT die Zeit bis zur Zahlung darstellt. Dieser Ansatz ist besonders wichtig in der Bewertung von Finanzinstrumenten, da er es ermöglicht, die Risiken und Unsicherheiten, die mit zukünftigen Zahlungen verbunden sind, angemessen zu berücksichtigen. In der Praxis wird der stochastische Diskontierungsfaktor häufig in Modellen wie dem Black-Scholes-Modell oder in der Preisbildung von Derivaten verwendet.