StudierendeLehrende

Arrow’S Impossibility Theorem

Das Arrow'sche Unmöglichkeitstheorem, formuliert von Kenneth Arrow in den 1950er Jahren, besagt, dass es unter bestimmten Bedingungen unmöglich ist, eine ideale Wahlmethode zu finden, die die Präferenzen einer Gruppe von Individuen in eine kollektive Entscheidung umwandelt. Insbesondere stellt das Theorem fest, dass kein Abstimmungssystem alle folgenden fünf Bedingungen gleichzeitig erfüllen kann:

  1. Vollständigkeit: Für jede mögliche Wahl muss ein Ranking existieren.
  2. Transitivität: Wenn A über B und B über C bevorzugt wird, dann sollte auch A über C bevorzugt werden.
  3. Unabhängigkeit von irrelevanten Alternativen: Die Präferenz zwischen zwei Alternativen sollte unabhängig von der Einführung oder Entfernung einer dritten Option bleiben.
  4. Nicht-Diktatur: Es darf keinen Wähler geben, dessen Präferenzen die endgültige Entscheidung unabhängig von den anderen Wählern dominieren.
  5. Bestrafung: Wenn alle Wähler eine bestimmte Option bevorzugen, sollte diese Option auch gewählt werden.

Das Theorem zeigt, dass es kein perfektes Abstimmungssystem gibt, das diese Bedingungen erfüllt, was erhebliche Implikationen für die politische Theorie und die Wirtschaft hat. Es verdeutlicht die Schwierigkeiten bei der Aggregation individueller Präferenzen zu einer konsistenten kollektiven Entscheidung.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Endogene Geldtheorie Post-Keynesianismus

Die Endogenous Money Theory (EMT) im postkeynesianischen Ansatz besagt, dass das Geldangebot nicht exogen, sondern endogen bestimmt wird. Das bedeutet, dass Banken Geld schaffen, indem sie Kredite vergeben, was der Nachfrage nach Krediten entspricht. In diesem Modell wird das Geldangebot durch die wirtschaftlichen Aktivitäten und die Bedürfnisse der Unternehmen und Haushalte beeinflusst.

Im Gegensatz zur klassischen Sichtweise, die annimmt, dass die Zentralbank die Geldmenge unabhängig von der Nachfrage steuert, argumentiert die EMT, dass die Zentralbank eher als Regulator auftritt, der die Bedingungen für die Geldschöpfung durch die Banken festlegt. Dies führt zu einem dynamischen Prozess, in dem die Geldmenge sich an die ökonomischen Gegebenheiten anpasst, was wiederum die Gesamtwirtschaft beeinflusst. Ein zentrales Konzept ist, dass die Zinsen nicht einfach durch das Geldangebot bestimmt werden, sondern auch durch die Nachfrage nach Kreditmitteln und die Risikobewertung von Kreditnehmern.

Funktionale Gehirnnetzwerke

Funktionale Gehirnnetzwerke beziehen sich auf die interaktiven Netzwerke von Gehirnregionen, die während spezifischer kognitiver Prozesse aktiv miteinander kommunizieren. Diese Netzwerke sind nicht konstant, sondern verändern sich dynamisch, abhängig von den aktuellen Aufgaben oder mentalen Zuständen. Zu den bekanntesten funktionalen Netzwerken gehören das default mode network (DMN), das für Ruhezustände und Selbstreflexion verantwortlich ist, sowie das executive control network, das für höhere kognitive Funktionen wie Problemlösung und Entscheidungsfindung zuständig ist.

Die Analyse dieser Netzwerke erfolgt häufig durch moderne bildgebende Verfahren wie fMRT (funktionelle Magnetresonanztomographie), die es ermöglichen, die Aktivität in verschiedenen Gehirnregionen zeitlich zu verfolgen und zu verstehen, wie diese miteinander verschaltet sind. Ein besseres Verständnis funktionaler Gehirnnetzwerke kann helfen, neurologische Erkrankungen zu diagnostizieren und Therapieansätze zu entwickeln, indem es aufzeigt, wie Abweichungen in der Netzwerkintegration oder -aktivierung zu bestimmten Symptomen führen können.

Rekurrente Netze

Recurrent Networks, oft bezeichnet als Recurrent Neural Networks (RNNs), sind eine spezielle Klasse von neuronalen Netzwerken, die für die Verarbeitung von sequenziellen Daten entwickelt wurden. Im Gegensatz zu herkömmlichen Feedforward-Netzwerken können RNNs Informationen aus vorherigen Zeitschritten speichern und nutzen, was sie besonders geeignet für Aufgaben wie Spracherkennung, Textgenerierung und Zeitreihenanalyse macht. Die zentrale Idee ist, dass die Ausgabe eines Neurons nicht nur von den aktuellen Eingaben abhängt, sondern auch von vorherigen Zuständen, was durch Rückkopplungsschleifen erreicht wird.

Mathematisch lässt sich die Aktualisierung des verborgenen Zustands hth_tht​ eines RNNs wie folgt beschreiben:

ht=f(Whht−1+Wxxt)h_t = f(W_h h_{t-1} + W_x x_t)ht​=f(Wh​ht−1​+Wx​xt​)

Hierbei ist WhW_hWh​ die Gewichtsmatrix für den vorherigen Zustand, WxW_xWx​ die Gewichtsmatrix für den aktuellen Eingang xtx_txt​, und fff ist eine Aktivierungsfunktion. Diese Struktur ermöglicht es, Informationen über längere Zeiträume zu speichern, was eine Herausforderung für traditionelle Netzwerke darstellt. Allerdings leiden viele RNNs unter dem Problem des Vanishing Gradient, weshalb spezialisierte Architekturen wie Long Short-Term Memory (LSTM) und Gated Recurrent Units (GR

Hyperbolische Funktionen Identitäten

Hyperbolische Funktionen sind mathematische Funktionen, die in der Hyperbolischen Geometrie und vielen Bereichen der Physik und Ingenieurwissenschaften Anwendung finden. Die wichtigsten hyperbolischen Funktionen sind der hyperbolische Sinus, sinh⁡(x)\sinh(x)sinh(x), und der hyperbolische Kosinus, cosh⁡(x)\cosh(x)cosh(x), definiert durch:

sinh⁡(x)=ex−e−x2undcosh⁡(x)=ex+e−x2\sinh(x) = \frac{e^x - e^{-x}}{2} \quad \text{und} \quad \cosh(x) = \frac{e^x + e^{-x}}{2}sinh(x)=2ex−e−x​undcosh(x)=2ex+e−x​

Wichtige Identitäten für hyperbolische Funktionen sind:

  • Pythagoreische Identität: cosh⁡2(x)−sinh⁡2(x)=1\cosh^2(x) - \sinh^2(x) = 1cosh2(x)−sinh2(x)=1
  • Additionstheoreme: sinh⁡(a±b)=sinh⁡(a)cosh⁡(b)±cosh⁡(a)sinh⁡(b)\sinh(a \pm b) = \sinh(a)\cosh(b) \pm \cosh(a)\sinh(b)sinh(a±b)=sinh(a)cosh(b)±cosh(a)sinh(b) und cosh⁡(a±b)=cosh⁡(a)cosh⁡(b)±sinh⁡(a)sinh⁡(b)\cosh(a \pm b) = \cosh(a)\cosh(b) \pm \sinh(a)\sinh(b)cosh(a±b)=cosh(a)cosh(b)±sinh(a)sinh(b)

Diese Identitäten sind von großer Bedeutung, da sie es ermöglichen, komplexe hyperbolische Ausdrücke zu vereinfachen und Probleme in der Analysis und Differentialgleichungen zu lösen.

RNA-Sequenzierungstechnologie

Die RNA-Sequenzierungstechnologie (RNA-Seq) ist eine leistungsstarke Methode zur Analyse der Genexpression in Zellen. Sie ermöglicht es Wissenschaftlern, die Transkriptomlandschaft einer Zelle zu erfassen, indem sie die RNA-Moleküle isolieren, in cDNA (komplementäre DNA) umwandeln und anschließend sequenzieren. Diese Technik liefert nicht nur Informationen über die Menge der exprimierten Gene, sondern auch über alternative Splicing-Ereignisse und posttranskriptionale Modifikationen.

Ein wichtiger Vorteil von RNA-Seq ist die Fähigkeit, sowohl bekannte als auch unbekannte RNA-Transkripte zu identifizieren, was sie von traditionellen Methoden wie der Microarray-Analyse abhebt. Die generierten Daten können dann zur Untersuchung von krankheitsrelevanten Genen, zur Erforschung der Zellbiologie und zur Entwicklung von Therapien genutzt werden. Durch den Vergleich von RNA-Seq-Daten aus verschiedenen Bedingungen lassen sich auch tiefere Einblicke in die Regulation der Genexpression gewinnen.

Hyperbolische Diskontierung

Hyperbolic Discounting ist ein psychologisches Konzept, das beschreibt, wie Menschen zukünftige Belohnungen bewerten und wie sich diese Bewertung über die Zeit verändert. Im Gegensatz zur exponentiellen Diskontierung, bei der zukünftige Belohnungen konstant abnehmen, zeigt die hyperbolische Diskontierung, dass die Abwertung zukünftiger Belohnungen zunächst stark ist, aber mit zunehmendem Abstand zur Gegenwart langsamer wird. Dies führt oft zu irrationalem Verhalten, da kurzfristige Belohnungen überbewertet und langfristige Belohnungen unterbewertet werden.

Mathematisch kann die hyperbolische Diskontierungsfunktion wie folgt dargestellt werden:

V(t)=V01+ktV(t) = \frac{V_0}{1 + kt}V(t)=1+ktV0​​

Hierbei ist V(t)V(t)V(t) der Wert einer zukünftigen Belohnung, V0V_0V0​ der Wert der sofortigen Belohnung, kkk eine Konstante, die die Diskontierungsrate beschreibt, und ttt die Zeit bis zur Belohnung. Diese Diskontierung kann zu Problemen in der Entscheidungsfindung führen, insbesondere in Bereichen wie Konsumverhalten, Gesundheit und Finanzen, wo langfristige Planung erforderlich ist.