Die Poisson-Summationsformel ist ein wichtiges Resultat in der Fourier-Analyse, das eine Beziehung zwischen der Summation einer Funktion und der Summation ihrer Fourier-Transformierten herstellt. Sie besagt, dass für eine geeignete Funktion die folgende Gleichung gilt:
Hierbei ist die Fourier-Transformierte von , definiert als:
Die Formel zeigt, dass die Diskretisierung einer Funktion (die Summation über ganzzahlige Punkte) äquivalent ist zur Diskretisierung ihrer Frequenzdarstellung. Dies hat weitreichende Anwendungen in verschiedenen Bereichen der Mathematik und Physik, insbesondere in der Signalverarbeitung und der Zahlentheorie, da sie es ermöglicht, Probleme in einem Bereich durch die Betrachtung in einem anderen Bereich zu lösen.
Die Jacobi-Theta-Funktion ist eine Familie von speziellen Funktionen, die in der Mathematik, insbesondere in der Theorie der elliptischen Funktionen und der komplexen Analyse, eine zentrale Rolle spielt. Sie wird typischerweise in der Form dargestellt, wobei eine komplexe Variable und eine komplexe Zahl im oberen Halbebereich ist. Diese Funktion hat die bemerkenswerte Eigenschaft, dass sie sowohl als Periodenfunktion als auch als Modul für elliptische Kurven fungiert. Die Jacobi-Theta-Funktion hat mehrere wichtige Eigenschaften, einschließlich ihrer Transformationseigenschaften unter Modulotransformationen und ihrer Anwendung in der Lösung von Differentialgleichungen.
Zusätzlich gibt es verschiedene Varianten der Theta-Funktion, die oft durch Indizes und Parameter differenziert werden, wie zum Beispiel . Diese Funktionen finden nicht nur Anwendung in der reinen Mathematik, sondern auch in der theoretischen Physik, insbesondere in der Stringtheorie und der statistischen Mechanik, wo sie zur Beschreibung von Zuständen und zur Berechnung von Partitionfunktionen verwendet werden.
Die Z-Transform ist ein wichtiges mathematisches Werkzeug in der Signalverarbeitung und Systemsicherheit, das insbesondere zur Analyse diskreter Zeit-Signale verwendet wird. Sie wandelt eine zeitdiskrete Folge in eine komplexe Funktion um, die von einer komplexen Variablen abhängt. Mathematisch wird dies definiert als:
Diese Transformation ermöglicht es, die Eigenschaften von diskreten Signalen im Frequenzbereich zu untersuchen und erleichtert die Lösung von Differenzengleichungen. Ein wesentliches Merkmal der Z-Transform ist ihr Zusammenhang zur Fourier-Transform, da die Z-Transform die Fourier-Transform von Signalen auf der Einheitssphäre im komplexen Raum darstellt. Anwendungen finden sich in der Regelungstechnik, digitalen Filterdesigns und der Analyse von Systemstabilität.
Das Overlapping Generations Model (OLG-Modell) ist ein fundamentales Konzept in der modernen Wirtschaftstheorie, das die Interaktionen zwischen verschiedenen Generationen in einer Volkswirtschaft untersucht. Es geht davon aus, dass Individuen in verschiedenen Lebensphasen leben und wirtschaftliche Entscheidungen treffen, die sowohl ihre eigene Generation als auch die nachfolgende Generation beeinflussen. In diesem Modell arbeiten ältere und jüngere Generationen gleichzeitig, was bedeutet, dass es Überschneidungen in den Zeiträumen gibt, in denen die Generationen aktiv sind.
Ein zentrales Merkmal des OLG-Modells ist, dass es die Dynamik von Ersparnissen und Investitionen über Zeit betrachtet. Wirtschaftliche Entscheidungen, wie das Sparen für den Ruhestand oder Investitionen in Bildung, haben langfristige Auswirkungen auf die wirtschaftliche Entwicklung. Mathematisch wird das Modell häufig durch Gleichungen dargestellt, die die optimale Konsum- und Sparstrategie der Individuen beschreiben, typischerweise in Form von Nutzenmaximierung unter Berücksichtigung von Budgetrestriktionen:
Hierbei steht für den Nutzen des Konsums zum Zeitpunkt , für den Konsum der nächsten Generation und für den Diskontfaktor, der die
Das Kolmogorov-Spektrum beschreibt die Energieverteilung in einer turbulenten Strömung und ist ein zentrales Konzept in der Turbulenztheorie. Es basiert auf den Arbeiten des russischen Mathematikers Andrei Kolmogorov, der in den 1940er Jahren die statistischen Eigenschaften turbulenter Strömungen untersuchte. Im Kern besagt das Kolmogorov-Spektrum, dass in einer homogenen, isotropen Turbulenz die kinetische Energie über verschiedene Skalen hinweg verteilt ist, wobei kleinere Skalen eine größere Dichte an Energie aufweisen. Mathematisch wird diese Beziehung oft durch die Energie-Spektraldichte dargestellt, die als Funktion der Wellenzahl gegeben ist:
Hierbei ist der Wellenzahlvektor, und die Beziehung zeigt, dass die Energie in den größeren Skalen (niedrigere Werte von ) geringer ist als in den kleineren Skalen (höhere Werte von ). Dieses Spektrum hilft nicht nur beim Verständnis von Turbulenzphänomenen, sondern hat auch Anwendungen in verschiedenen Bereichen der Physik und Ingenieurwissenschaften, etwa in der Meteorologie und der Strömungsmechanik.
Graphen ist ein einlagiges Material, das aus Kohlenstoffatomen in einem zweidimensionalen Gitter besteht. Es zeichnet sich durch eine exzellente elektrische Leitfähigkeit aus, die auf die Struktur und die Eigenschaften seiner Elektronen zurückzuführen ist. Die Elektronen in Graphen verhalten sich wie masselose Fermionen, was bedeutet, dass sie sich nahezu ohne Widerstand bewegen können. Dies führt zu einer sehr hohen Beweglichkeit der Ladungsträger, die typischerweise bei Raumtemperatur Werte von bis zu erreichen kann.
Ein weiterer entscheidender Faktor für die Leitfähigkeit von Graphen ist die Bandstruktur, die es ermöglicht, dass Elektronen relativ leicht von einem Zustand in einen anderen übergehen. Die hohe Thermoleitfähigkeit in Kombination mit der elektrischen Leitfähigkeit macht Graphen zu einem vielversprechenden Material für verschiedene Anwendungen in der Elektronik und der Energieumwandlung, wie z.B. in Transistoren und Superkondensatoren.
Der Floyd-Warshall-Algorithmus ist ein graphentheoretisches Verfahren zur Bestimmung der kürzesten Wege zwischen allen Paaren von Knoten in einem gewichteten Graphen. Er funktioniert sowohl für gerichtete als auch für ungerichtete Graphen und kann positive sowie negative Gewichtungen verarbeiten, solange es keine negativen Zyklen gibt. Der Algorithmus basiert auf der dynamischen Programmierung und nutzt eine Matrix, um die aktuellen Abstände zwischen den Knoten zu speichern.
Die Grundidee ist, dass der kürzeste Weg zwischen zwei Knoten und möglicherweise über einen dritten Knoten verläuft. Die Aktualisierungsformel lautet:
Hierbei steht für die aktuelle Distanz zwischen den Knoten und . Der Algorithmus wird in Zeit ausgeführt, wobei die Anzahl der Knoten ist. Am Ende werden alle kürzesten Wege in der Matrix gespeichert, was den Algorithmus besonders nützlich für Anwendungen macht, die eine vollständige Distanzmatrix benötigen.