StudierendeLehrende

Stackelberg Leader

Der Stackelberg Leader ist ein Konzept aus der Spieltheorie und der Wirtschaftswissenschaft, das eine bestimmte Rolle in einem duopolaren Markt beschreibt. In einem Stackelberg-Modell agiert der Leader zuerst und trifft Entscheidungen, wie z.B. die Menge der produzierten Güter oder den Preis. Der Nachfolger, auch Stackelberg Follower genannt, beobachtet die Entscheidungen des Leaders und reagiert darauf, was ihm ermöglicht, seine eigene Strategie optimal anzupassen. Diese Führungsstruktur führt oft zu einem Wettbewerbsvorteil für den Leader, da er die Marktbedingungen und die Reaktionen des Followers antizipieren kann.

Mathematisch kann das Gleichgewicht in einem Stackelberg-Modell durch die Maximierung der Gewinnfunktionen der beiden Unternehmen dargestellt werden, wobei der Leader zuerst wählt und der Follower seine Reaktion darauf anpasst:

max⁡LeaderπL=P(Q)⋅QL−C(QL)\max_{\text{Leader}} \pi_L = P(Q) \cdot Q_L - C(Q_L)Leadermax​πL​=P(Q)⋅QL​−C(QL​) max⁡FollowerπF=P(Q)⋅QF−C(QF)\max_{\text{Follower}} \pi_F = P(Q) \cdot Q_F - C(Q_F)Followermax​πF​=P(Q)⋅QF​−C(QF​)

Hierbei ist P(Q)P(Q)P(Q) der Preis, der von der Gesamtmenge QQQ abhängt, QLQ_LQL​ und QFQ_FQF​ sind die Produktionsmengen des Leaders und Followers, und CCC ist die Kostenfunktion.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Casimir-Kraft-Messung

Die Casimir-Kraft ist eine quantenmechanische Kraft, die zwischen zwei unbeschichteten, parallelen Metallplatten entsteht, die sich in einem Vakuum befinden. Diese Kraft resultiert aus den quantisierten Fluktuationen des elektromagnetischen Feldes im Raum zwischen den Platten und nimmt mit zunehmendem Abstand zwischen ihnen ab. Um die Casimir-Kraft zu messen, werden hochpräzise Instrumente eingesetzt, die in der Lage sind, winzige Kräfte zu detektieren und die Position der Platten mit extremer Genauigkeit zu kontrollieren.

Die Messung erfolgt typischerweise durch die Verwendung eines Atomkraftmikroskops oder anderer feiner Kräfte-Messgeräte, die die Anziehung zwischen den Platten in Abhängigkeit von ihrem Abstand quantifizieren. Die Casimir-Kraft kann mathematisch durch die Formel

F=π2ℏc240a4F = \frac{\pi^2 \hbar c}{240 a^4}F=240a4π2ℏc​

beschrieben werden, wobei FFF die Kraft, ℏ\hbarℏ das reduzierte Plancksche Wirkungsquantum, ccc die Lichtgeschwindigkeit und aaa der Abstand zwischen den Platten ist. Diese Messungen sind nicht nur wichtig für das Verständnis grundlegender physikalischer Prinzipien, sondern haben auch Anwendungen in der Nanotechnologie und Materialwissenschaften.

Legendre-Transformation

Die Legendre-Transformation ist ein wichtiges mathematisches Werkzeug, das in der Optimierung, Physik und in der Thermodynamik Anwendung findet. Sie ermöglicht es, eine Funktion f(x)f(x)f(x), die von einer Variablen xxx abhängt, in eine neue Funktion g(p)g(p)g(p) zu transformieren, die von der Steigung p=dfdxp = \frac{df}{dx}p=dxdf​ abhängt. Mathematisch wird die Legendre-Transformation definiert durch:

g(p)=sup⁡x(px−f(x))g(p) = \sup_{x}(px - f(x))g(p)=xsup​(px−f(x))

Hierbei ist der Supremum-Wert über xxx zu finden, was bedeutet, dass g(p)g(p)g(p) die maximalen Werte von px−f(x)px - f(x)px−f(x) für alle möglichen xxx darstellt. Diese Transformation ist besonders nützlich, um zwischen verschiedenen Darstellungen eines Problems zu wechseln, zum Beispiel von Positions- zu Impulsdarstellungen in der klassischen Mechanik. Ein typisches Beispiel ist der Übergang von der Energie- zu der Entropiefunktion in der Thermodynamik, wo die Legendre-Transformation hilft, die thermodynamischen Potenziale wie die Helmholtz- oder Gibbs-Energie zu definieren.

Nyquist-Kriterium

Das Nyquist-Kriterium ist ein fundamentales Konzept in der Signalverarbeitung und Regelungstechnik, das beschreibt, unter welchen Bedingungen ein System stabil ist. Es basiert auf der Analyse der Übertragungsfunktionen von Systemen im Frequenzbereich. Das Kriterium besagt, dass ein geschlossenes System stabil ist, wenn die Anzahl der Umkreisungen, die der Nyquist-Plot der offenen Übertragungsfunktion um den Punkt −1-1−1 im komplexen Frequenzbereich macht, gleich der Anzahl der Pole der offenen Übertragungsfunktion im rechten Halbraum ist.

Um das Nyquist-Kriterium anzuwenden, wird der Nyquist-Plot erstellt, der die Frequenzantwort des Systems darstellt. Wichtige Punkte dabei sind:

  • Die Lage der Pole und Nullstellen des Systems.
  • Die Frequenzwerte, bei denen die Phase der Übertragungsfunktion −180∘-180^\circ−180∘ erreicht.
  • Die Anzahl der Umkreisungen um den kritischen Punkt −1-1−1.

Das Nyquist-Kriterium ist besonders nützlich, um die Stabilität eines Regelkreises zu analysieren und zu gewährleisten, dass das System auf Störungen angemessen reagiert.

Wavelet-Transformationsanwendungen

Die Wavelet-Transformation ist eine leistungsstarke mathematische Technik, die in verschiedenen Bereichen Anwendung findet, um Signale und Daten zu analysieren und zu verarbeiten. Sie ermöglicht die Zerlegung von Signalen in unterschiedliche Frequenzkomponenten, wodurch sowohl zeitliche als auch frequenzielle Informationen erfasst werden können. Diese Eigenschaft macht sie besonders nützlich in der Signalverarbeitung, wo sie beispielsweise zur Rauschunterdrückung, Kompression und Merkmalsextraktion eingesetzt wird.

In der Bildverarbeitung wird die Wavelet-Transformation häufig zur Bildkompression verwendet, wie z.B. im JPEG 2000-Format, da sie eine effiziente Reduzierung der Dateigröße ermöglicht, ohne die Bildqualität erheblich zu beeinträchtigen. Weitere Anwendungen finden sich in der Datenanalyse, wo sie zur Identifizierung von Mustern und Anomalien in großen Datensätzen dient. Auch in der Medizin, insbesondere in der Analyse von EEG- und EKG-Daten, spielt die Wavelet-Transformation eine bedeutende Rolle, da sie hilft, biologische Signale zu entschlüsseln und zu interpretieren.

Stokes' Satz

Stokes' Theorem ist ein fundamentales Resultat der Vektoranalysis, das eine Beziehung zwischen der Integration eines Vektorfeldes über eine Fläche und der Integration seiner Rotation über den Rand dieser Fläche herstellt. Formal ausgedrückt, lautet das Theorem:

∬S(∇×F)⋅dS=∮∂SF⋅dr\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{r}∬S​(∇×F)⋅dS=∮∂S​F⋅dr

Hierbei ist SSS eine orientierte Fläche, ∂S\partial S∂S der Rand dieser Fläche, F\mathbf{F}F ein Vektorfeld, ∇×F\nabla \times \mathbf{F}∇×F die Rotation von F\mathbf{F}F, und dSd\mathbf{S}dS sowie drd\mathbf{r}dr sind die Flächen- bzw. Linienelemente. Stokes' Theorem verknüpft somit die lokale Eigenschaft der Rotation eines Vektorfeldes mit der globalen Eigenschaft über die Randkurve. Dieses Theorem hat weitreichende Anwendungen in Physik und Ingenieurwissenschaften, insbesondere in der Elektrodynamik und Fluiddynamik, da es hilft, komplexe Integrationen zu vereinfachen und zu verstehen.

Prisoner Dilemma

Das Prisoner Dilemma ist ein klassisches Beispiel aus der Spieltheorie, das zeigt, wie zwei rational handelnde Individuen in einer Konfliktsituation zu suboptimalen Ergebnissen gelangen können. Stellen Sie sich vor, zwei Verbrecher werden festgenommen und für ein Verbrechen verhört. Jeder hat die Möglichkeit, die Aussage gegen den anderen zu machen oder zu schweigen. Wenn beide schweigen, erhalten sie eine mildere Strafe. Wenn einer aussagt und der andere schweigt, wird der Verräter freigelassen, während der Schweigende die volle Strafe erhält. Wenn beide aussagen, bekommen sie beide eine schwerere Strafe. Die dominante Strategie für beide ist, auszusagen, obwohl die beste gemeinsame Entscheidung darin bestünde, zu schweigen. Dieses Dilemma verdeutlicht, wie individuelle Rationalität zu einem kollektiven Nachteil führen kann und hat weitreichende Implikationen in Bereichen wie Wirtschaft, Politik und Sozialwissenschaften.