StudierendeLehrende

Bayesian Statistics Concepts

Die Bayesianische Statistik ist ein Ansatz zur Datenanalyse, der die Wahrscheinlichkeit als Maß für den Grad des Glaubens an eine Hypothese interpretiert. Im Gegensatz zur klassischen Statistik, die auf Frequenzen basiert, nutzt die Bayesianische Statistik das Bayessche Theorem zur Aktualisierung von Wahrscheinlichkeiten, wenn neue Daten verfügbar sind. Mathematisch wird dies durch die Formel dargestellt:

P(H∣D)=P(D∣H)⋅P(H)P(D)P(H | D) = \frac{P(D | H) \cdot P(H)}{P(D)}P(H∣D)=P(D)P(D∣H)⋅P(H)​

Hierbei steht P(H∣D)P(H | D)P(H∣D) für die posterior Wahrscheinlichkeit der Hypothese HHH gegeben die Daten DDD, P(D∣H)P(D | H)P(D∣H) ist die likelihood der Daten unter der Hypothese, P(H)P(H)P(H) ist die prior Wahrscheinlichkeit der Hypothese und P(D)P(D)P(D) ist die marginale Wahrscheinlichkeit der Daten. Dieser Ansatz ermöglicht es, Vorwissen (Prior) in die Analyse einzubeziehen und bietet eine flexible und intuitive Möglichkeit, Entscheidungen unter Unsicherheit zu treffen. Durch die Iteration dieses Prozesses können Bayesianer ihre Schätzungen kontinuierlich verfeinern, was in dynamischen und sich verändernden Umgebungen besonders vorteilhaft ist.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Mems-Sensoren

MEMS-Sensoren (Micro-Electro-Mechanical Systems) sind mikroskopisch kleine Geräte, die mechanische und elektrische Komponenten kombinieren, um physikalische Größen wie Beschleunigung, Druck, Temperatur und Feuchtigkeit zu messen. Diese Sensoren basieren auf der Integration von Mikroelektronik und mechanischen Strukturen auf einem einzigen Chip, was sie besonders kompakt und leistungsfähig macht.

Die Funktionsweise beruht häufig auf der Nutzung von Mikrostrukturen, die auf physikalische Änderungen wie Bewegungen oder Druck reagieren und diese in elektrische Signale umwandeln. Ein typisches Beispiel sind Beschleunigungssensoren, die die Änderung der Bewegung messen, indem sie die Verschiebung einer Masse in einem Mikrochip detektieren. MEMS-Sensoren finden breite Anwendung in der Automobilindustrie, der Medizintechnik, der Unterhaltungselektronik und vielen anderen Bereichen, da sie eine kostengünstige und präzise Möglichkeit bieten, Daten in Echtzeit zu erfassen und zu verarbeiten.

Rationale Blasen

Rational Bubbles beziehen sich auf Situationen in Finanzmärkten, in denen die Preise von Vermögenswerten über ihren intrinsischen Wert hinaus steigen, basierend auf der Erwartung, dass zukünftige Käufer bereit sind, noch höhere Preise zu zahlen. Diese Preisblasen entstehen oft, weil Investoren rationale Entscheidungen treffen und die Möglichkeit, von einem Preisanstieg zu profitieren, als attraktiver empfinden als den tatsächlichen Wert des Vermögenswertes. Die Theorie hinter Rational Bubbles kann durch das Konzept der erwarteten zukünftigen Preise beschrieben werden, wobei Investoren ihre Kaufentscheidungen auf der Annahme stützen, dass andere Investoren ebenfalls kaufen werden, um von den steigenden Preisen zu profitieren.

Mathematisch kann dies durch die Gleichung für den Preis eines Vermögenswertes PtP_tPt​ dargestellt werden:

Pt=Et[Pt+1]+D(1+r)P_t = E_t[P_{t+1}] + \frac{D}{(1+r)}Pt​=Et​[Pt+1​]+(1+r)D​

wobei Et[Pt+1]E_t[P_{t+1}]Et​[Pt+1​] die erwartete zukünftige Preisentwicklung, DDD die Dividende und rrr der Diskontsatz ist. Rational Bubbles können jedoch nicht ewig bestehen bleiben und enden oft abrupt, wenn die Marktteilnehmer realisieren, dass die Preise nicht durch fundamentale Werte gestützt sind, was zu einem plötzlichen Preisverfall führt.

Dirac-Spinor

Ein Dirac Spinor ist ein mathematisches Objekt, das in der Quantenmechanik und der relativistischen Quantenfeldtheorie verwendet wird, um die Eigenschaften von fermionischen Teilchen, wie Elektronen, zu beschreiben. Es handelt sich dabei um eine spezielle Art von Spinor, die vier Komponenten hat und somit die Anforderungen der Dirac-Gleichung erfüllt, die die relativistische Beschreibung von Spin-1/2-Teilchen ermöglicht.

Mathematisch kann ein Dirac Spinor ψ\psiψ in Form eines Vektors dargestellt werden:

ψ=(ϕχ)\psi = \begin{pmatrix} \phi \\ \chi \end{pmatrix}ψ=(ϕχ​)

wobei ϕ\phiϕ und χ\chiχ jeweils zwei-componenten Spinoren sind, die die verschiedenen spin- und antipartikel Zustände repräsentieren. Die Verwendung von Dirac Spinoren ist entscheidend, um Phänomene wie Zerfall und Kollision von Teilchen zu analysieren, insbesondere in Kontexten, die sowohl relativistische Effekte als auch Spin berücksichtigen müssen.

Bragg-Diffektion

Die Bragg-Diffraction ist ein fundamentales Prinzip der Röntgenkristallographie, das die Wechselwirkung von Röntgenstrahlen mit kristallinen Materialien beschreibt. Sie basiert auf der Bedingung, dass konstruktive Interferenz auftritt, wenn die Röntgenstrahlen auf die atomare Gitterstruktur eines Kristalls treffen. Die mathematische Grundlage dafür wird durch die Bragg-Gleichung gegeben:

nλ=2dsin⁡(θ)n\lambda = 2d \sin(\theta)nλ=2dsin(θ)

Hierbei ist nnn die Ordnung der Reflexion, λ\lambdaλ die Wellenlänge der Röntgenstrahlen, ddd der Abstand zwischen den Gitterebenen des Kristalls und θ\thetaθ der Einfallswinkel der Strahlen. Wenn die Bedingung erfüllt ist, kann ein intensives Reflexionssignal gemessen werden, das auf die Struktur des Kristalls hinweist. Die Bragg-Diffraction ermöglicht es Wissenschaftlern, die atomare Struktur von Materialien zu untersuchen und ist daher ein unverzichtbares Werkzeug in der Materialwissenschaft und Chemie.

Lindelöf-Hypothese

Die Lindelöf-Hypothese ist eine nicht bewiesene Vermutung in der Zahlentheorie, die sich mit der Verteilung der Nullstellen von Dirichlet-Reihen beschäftigt. Sie besagt, dass für jede Dirichlet-Reihe L(s,χ)L(s, \chi)L(s,χ) mit Dirichlet-Charakter χ\chiχ und für alle ϵ>0\epsilon > 0ϵ>0 die Nullstellen dieser Reihe, die nicht auf der kritischen Linie Re(s)=1/2\text{Re}(s) = 1/2Re(s)=1/2 liegen, in einer bestimmten strengen Form begrenzt sind. Genauer gesagt, sollte gelten, dass die Anzahl der Nullstellen in der Region 0<Re(s)<1+T0 < \text{Re}(s) < 1 + T0<Re(s)<1+T nicht schneller als O(T1+ϵ)O(T^{1+\epsilon})O(T1+ϵ) wachsen kann, während TTT gegen unendlich geht.

Die Hypothese ist eng mit der Riemannschen Vermutung verbunden und hat tiefgreifende Implikationen für die asymptotische Verteilung von Primzahlen und die Struktur der Zahlentheorie. Trotz intensiver Untersuchungen bleibt die Lindelöf-Hypothese eines der offenen Probleme in der modernen Mathematik.

Optimalsteuerung Pontryagin

Die Pontryagin-Maximalprinzip ist ein fundamentales Konzept in der optimalen Steuerungstheorie, das von dem Mathematiker Lev Pontryagin in den 1950er Jahren entwickelt wurde. Es bietet eine Methode zur Bestimmung der optimalen Steuerung einer dynamischen Systembeschreibung, um ein bestimmtes Ziel zu erreichen, wie z.B. die Minimierung von Kosten oder die Maximierung eines Ertrags. Das Prinzip basiert auf der Formulierung eines sogenannten Hamiltonian HHH, der die Systemdynamik und die Zielfunktion kombiniert.

Der Grundgedanke des Prinzips ist, dass die optimale Steuerung u∗(t)u^*(t)u∗(t) die notwendigen Bedingungen erfüllt, um den Hamiltonian zu maximieren. Mathematisch wird dies durch die Bedingung ausgedrückt:

H(x(t),u(t),λ(t))=max⁡uH(x(t),u,λ(t))H(x(t), u(t), \lambda(t)) = \max_{u} H(x(t), u, \lambda(t))H(x(t),u(t),λ(t))=umax​H(x(t),u,λ(t))

Hierbei sind x(t)x(t)x(t) die Zustandsvariablen, u(t)u(t)u(t) die Steuerungsvariablen, und λ(t)\lambda(t)λ(t) die adjungierten Variablen. Das Prinzip liefert auch eine Reihe von Differentialgleichungen, die die Dynamik der Zustands- und adjungierten Variablen beschreiben, sowie die Bedingungen für die Endpunkte. Somit ist das Pontryagin-Maximalprinzip ein