StudierendeLehrende

Bragg Diffraction

Die Bragg-Diffraction ist ein fundamentales Prinzip der Röntgenkristallographie, das die Wechselwirkung von Röntgenstrahlen mit kristallinen Materialien beschreibt. Sie basiert auf der Bedingung, dass konstruktive Interferenz auftritt, wenn die Röntgenstrahlen auf die atomare Gitterstruktur eines Kristalls treffen. Die mathematische Grundlage dafür wird durch die Bragg-Gleichung gegeben:

nλ=2dsin⁡(θ)n\lambda = 2d \sin(\theta)nλ=2dsin(θ)

Hierbei ist nnn die Ordnung der Reflexion, λ\lambdaλ die Wellenlänge der Röntgenstrahlen, ddd der Abstand zwischen den Gitterebenen des Kristalls und θ\thetaθ der Einfallswinkel der Strahlen. Wenn die Bedingung erfüllt ist, kann ein intensives Reflexionssignal gemessen werden, das auf die Struktur des Kristalls hinweist. Die Bragg-Diffraction ermöglicht es Wissenschaftlern, die atomare Struktur von Materialien zu untersuchen und ist daher ein unverzichtbares Werkzeug in der Materialwissenschaft und Chemie.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

MEMS-Gyroskop

Ein MEMS-Gyroskop (Micro-Electro-Mechanical Systems) ist ein kleiner Sensor, der Drehbewegungen und Orientierung in drei Dimensionen misst. Diese Geräte basieren auf mikroskopischen mechanischen Strukturen und elektronischen Komponenten, die auf einem einzigen Chip integriert sind. MEMS-Gyroskope nutzen die Prinzipien der Physik, um die Corioliskraft zu erfassen, die auf eine schwingende Masse wirkt, wenn sie einer Drehbewegung ausgesetzt ist.

Die wichtigsten Anwendungsbereiche umfassen:

  • Smartphones: zur Bildschirmausrichtung und Spielsteuerung.
  • Drohnen und Roboter: für die Stabilisierung und Navigation.
  • Fahrzeuge: zur Verbesserung der Sicherheitssysteme und Fahrdynamik.

Durch ihre kompakte Größe und geringen Kosten haben MEMS-Gyroskope die Möglichkeiten der Bewegungserkennung revolutioniert und finden breite Anwendung in der Industrie und im Alltag.

Arrow's Unmöglichkeitstheorem

Das Arrow'sche Unmöglichkeitstheorem, formuliert von Kenneth Arrow in den 1950er Jahren, besagt, dass es unter bestimmten Bedingungen unmöglich ist, eine ideale Wahlmethode zu finden, die die Präferenzen einer Gruppe von Individuen in eine kollektive Entscheidung umwandelt. Insbesondere stellt das Theorem fest, dass kein Abstimmungssystem alle folgenden fünf Bedingungen gleichzeitig erfüllen kann:

  1. Vollständigkeit: Für jede mögliche Wahl muss ein Ranking existieren.
  2. Transitivität: Wenn A über B und B über C bevorzugt wird, dann sollte auch A über C bevorzugt werden.
  3. Unabhängigkeit von irrelevanten Alternativen: Die Präferenz zwischen zwei Alternativen sollte unabhängig von der Einführung oder Entfernung einer dritten Option bleiben.
  4. Nicht-Diktatur: Es darf keinen Wähler geben, dessen Präferenzen die endgültige Entscheidung unabhängig von den anderen Wählern dominieren.
  5. Bestrafung: Wenn alle Wähler eine bestimmte Option bevorzugen, sollte diese Option auch gewählt werden.

Das Theorem zeigt, dass es kein perfektes Abstimmungssystem gibt, das diese Bedingungen erfüllt, was erhebliche Implikationen für die politische Theorie und die Wirtschaft hat. Es verdeutlicht die Schwierigkeiten bei der Aggregation individueller Präferenzen zu einer konsistenten kollektiven Entscheidung.

Nash-Gleichgewicht

Das Nash Equilibrium ist ein zentrales Konzept in der Spieltheorie, das beschreibt, in welchem Zustand Spieler in einem Spiel strategische Entscheidungen treffen, sodass keiner der Spieler einen Anreiz hat, seine Strategie einseitig zu ändern. In einem Nash-Gleichgewicht wählt jeder Spieler die beste Strategie, gegeben die Strategien der anderen Spieler. Dies bedeutet, dass alle Spieler gleichzeitig optimal handeln, und zwar in dem Sinne, dass ihr Nutzen maximiert wird, solange die anderen Spieler ihre Entscheidungen beibehalten.

Mathematisch lässt sich das Nash-Gleichgewicht wie folgt formulieren: Sei SiS_iSi​ die Strategie des Spielers iii und Ui(S1,S2,…,Sn)U_i(S_1, S_2, \ldots, S_n)Ui​(S1​,S2​,…,Sn​) die Nutzenfunktion. Ein Nash-Gleichgewicht liegt vor, wenn für jeden Spieler iii gilt:

Ui(S1,S2,…,Sn)≥Ui(S1,S2,…,Si−1,Si′,Si+1,…,Sn)U_i(S_1, S_2, \ldots, S_n) \geq U_i(S_1, S_2, \ldots, S_{i-1}, S_i', S_{i+1}, \ldots, S_n)Ui​(S1​,S2​,…,Sn​)≥Ui​(S1​,S2​,…,Si−1​,Si′​,Si+1​,…,Sn​)

für alle möglichen Strategien Si′S_i'Si′​ von Spieler iii. Ein bekanntes Beispiel für ein Nash-Gleichgewicht ist das Gefangenendilemma, wo zwei Gefangene, die unabhängig entscheiden, ob sie gestehen oder schweigen, im Gleich

Gewebeengineering-Gerüst

Ein Tissue Engineering Scaffold ist eine künstlich hergestellte Struktur, die als Gerüst für das Wachstum von Zellen und Gewebe dient. Diese Gerüste sind entscheidend für die Gewebezüchtung, da sie die benötigte mechanische Unterstützung bieten und als Träger für Zellen fungieren, die sich in ein funktionales Gewebe differenzieren. Die Materialien, aus denen die Scaffolds bestehen, können unterschiedlich sein und reichen von biologischen Polymeren bis hin zu synthetischen Materialien. Wichtige Eigenschaften eines idealen Scaffolds sind Biokompatibilität, Biodegradierbarkeit und offene Porosität, um den Zellwachstumsprozess zu fördern. Zudem sollte das Scaffold eine kontrollierte Zelladhäsion und Wachstumsfaktoren freisetzen können, um die Regeneration von Gewebe zu unterstützen. In der Praxis werden solche Scaffolds in der regenerativen Medizin eingesetzt, um verletzte oder erkrankte Gewebe zu ersetzen oder zu reparieren.

Carnot-Limitierung

Die Carnot Limitation beschreibt die theoretischen Grenzen der Effizienz von Wärmekraftmaschinen, die zwischen zwei Temperaturreservoirs arbeiten. Gemäß dem Carnot-Theorem kann die maximale Effizienz η\etaη einer solchen Maschine durch die Temperaturen der beiden Reservoirs ausgedrückt werden:

η=1−TCTH\eta = 1 - \frac{T_C}{T_H}η=1−TH​TC​​

Hierbei ist TCT_CTC​ die Temperatur des kalten Reservoirs und THT_HTH​ die Temperatur des heißen Reservoirs, beide in Kelvin. Diese Beziehung zeigt, dass die Effizienz nur dann steigt, wenn die Temperaturdifferenz zwischen den Reservoirs erhöht wird. Wichtig ist, dass keine reale Maschine die Carnot-Effizienz erreichen kann, da immer Verluste durch Reibung, Wärmeleitung und andere Faktoren auftreten. Die Carnot-Limitation bildet somit eine fundamentale Grundlage für das Verständnis thermodynamischer Prozesse und ist entscheidend für die Entwicklung effizienter Energiesysteme.

Anisotropes Ätzen

Anisotropes Ätzen ist ein Verfahren, das in der Mikroelektronik und Nanotechnologie eingesetzt wird, um Materialien mit kontrollierten und spezifischen Geometrien zu bearbeiten. Im Gegensatz zum isotropen Ätzen, bei dem die Ätze gleichmäßig in alle Richtungen wirken, weist das anisotrope Ätzen eine gerichtete Ätzwirkung auf, die es ermöglicht, scharfe Kanten und präzise Strukturen zu erzeugen. Dies wird häufig durch die Verwendung von Ätzmitteln erreicht, die selektiv die Kristalloberflächen eines Materials angreifen, basierend auf deren Kristallorientierung.

Ein typisches Beispiel für anisotropes Ätzen ist das Ätzen von Silizium, bei dem die Ätzrate je nach Kristallrichtung variiert. Die Ätzrate kann in der Regel als Funktion der Kristallorientierung beschrieben werden, wobei die Beziehung durch die Formel R=k⋅cos⁡(θ)R = k \cdot \cos(\theta)R=k⋅cos(θ) definiert werden kann, wobei RRR die Ätzrate, kkk eine Konstante und θ\thetaθ der Winkel zwischen der Ätzrichtung und der Kristalloberfläche ist. Die Fähigkeit, anisotrop zu ätzen, ist entscheidend für die Herstellung von Mikrochips und MEMS (Micro-Electro-Mechanical Systems), da sie die Miniaturisierung und die