StudierendeLehrende

Bragg Reflection

Die Bragg-Reflexion beschreibt ein Phänomen, das auftritt, wenn Röntgenstrahlen oder andere Wellen an den regelmäßigen Gitterebenen eines Kristalls reflektiert werden. Dieses Konzept basiert auf dem Bragg-Gesetz, das besagt, dass konstruktive Interferenz auftritt, wenn der Wegunterschied zwischen den reflektierten Wellen an benachbarten Gitterebenen ein ganzzahliges Vielfaches der Wellenlänge ist. Mathematisch wird dies durch die Gleichung

nλ=2dsin⁡(θ)n \lambda = 2d \sin(\theta)nλ=2dsin(θ)

ausgedrückt, wobei nnn die Ordnung der Reflexion, λ\lambdaλ die Wellenlänge, ddd der Abstand zwischen den Gitterebenen und θ\thetaθ der Einfallswinkel ist. Bragg-Reflexion ist entscheidend in der Röntgenkristallographie, da sie es ermöglicht, die atomare Struktur von Kristallen zu bestimmen. Durch die Analyse der reflektierten Intensitäten und Winkel können Wissenschaftler die Positionen der Atome im Kristallgitter präzise ermitteln.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Fourier-Bessel-Reihe

Die Fourier-Bessel-Serie ist eine spezielle Form der Fourier-Serie, die zur Darstellung von Funktionen verwendet wird, die in einem zylindrischen oder kugelförmigen Koordinatensystem definiert sind. Im Gegensatz zur klassischen Fourier-Serie, die auf der Zerlegung in Sinus- und Kosinusfunktionen basiert, nutzt die Fourier-Bessel-Serie die Bessel-Funktionen als Basisfunktionen. Diese Funktionen sind besonders nützlich, wenn man Probleme in der Mathematik und Physik löst, die mit Wellen und Schwingungen in zylindrischen Geometrien zu tun haben.

Die allgemeine Form einer Fourier-Bessel-Serie kann wie folgt dargestellt werden:

f(r)=∑n=0∞AnJn(kr)f(r) = \sum_{n=0}^{\infty} A_n J_n(kr)f(r)=n=0∑∞​An​Jn​(kr)

Hierbei ist Jn(kr)J_n(kr)Jn​(kr) die n-te Bessel-Funktion erster Art, AnA_nAn​ die Koeffizienten der Serie und kkk ist eine Konstante, die oft mit der Wellenzahl in Verbindung steht. Diese Serie ermöglicht es, komplexe Funktionen durch eine unendliche Summe von Bessel-Funktionen zu approximieren, was in verschiedenen Anwendungen, wie z.B. der Signalverarbeitung oder der Lösung von Differentialgleichungen, von großer Bedeutung ist.

Nanotechnologie-Anwendungen

Nanotechnologie befasst sich mit der Manipulation und Anwendung von Materialien auf der Nanoskala, typischerweise im Bereich von 1 bis 100 Nanometern. Diese Technologie findet in zahlreichen Bereichen Anwendung, darunter Medizin, Elektronik, Umweltschutz und Materialwissenschaften. In der Medizin ermöglicht Nanotechnologie präzisere Diagnose- und Therapiemethoden, etwa durch gezielte Medikamentenabgabe oder die Verwendung von nanoskaligen Bildgebungsverfahren. In der Elektronik trägt sie zur Entwicklung kleinerer, effizienterer und leistungsfähigerer Geräte bei, wie zum Beispiel in Form von Nanotransistoren. Zudem wird sie im Umweltschutz eingesetzt, um Schadstoffe abzubauen oder die Wasseraufbereitung zu verbessern, während in der Materialwissenschaften durch nanostrukturierte Materialien verbesserte physikalische Eigenschaften, wie erhöhte Festigkeit oder geringeres Gewicht, erreicht werden können. Diese breite Anwendbarkeit macht die Nanotechnologie zu einem vielversprechenden Forschungsfeld mit dem Potenzial, viele Aspekte des täglichen Lebens zu revolutionieren.

Graphen-basierte Batterien

Graphene-basierte Batterien sind eine innovative Technologie, die auf dem einzigartigen Material Graphen basiert, das aus einer einzigen Schicht von Kohlenstoffatomen besteht. Diese Batterien bieten viele Vorteile gegenüber herkömmlichen Lithium-Ionen-Batterien, darunter eine höhere Energiedichte, schnellere Ladezeiten und eine längere Lebensdauer. Durch die Verwendung von Graphen können die Batterien sowohl die Kapazität als auch die Effizienz verbessern, was zu einer besseren Leistung in Anwendungen wie Elektrofahrzeugen und tragbaren Geräten führt. Zudem ist Graphen ein leichtes und flexibles Material, was neue Möglichkeiten für die Entwicklung von tragbaren und flexiblen Energiespeichersystemen eröffnet. Die Forschung in diesem Bereich ist vielversprechend, da Graphene-basierte Batterien das Potenzial haben, die Art und Weise, wie wir Energie speichern und nutzen, grundlegend zu verändern.

Stackelberg Leader

Der Stackelberg Leader ist ein Konzept aus der Spieltheorie und der Wirtschaftswissenschaft, das eine bestimmte Rolle in einem duopolaren Markt beschreibt. In einem Stackelberg-Modell agiert der Leader zuerst und trifft Entscheidungen, wie z.B. die Menge der produzierten Güter oder den Preis. Der Nachfolger, auch Stackelberg Follower genannt, beobachtet die Entscheidungen des Leaders und reagiert darauf, was ihm ermöglicht, seine eigene Strategie optimal anzupassen. Diese Führungsstruktur führt oft zu einem Wettbewerbsvorteil für den Leader, da er die Marktbedingungen und die Reaktionen des Followers antizipieren kann.

Mathematisch kann das Gleichgewicht in einem Stackelberg-Modell durch die Maximierung der Gewinnfunktionen der beiden Unternehmen dargestellt werden, wobei der Leader zuerst wählt und der Follower seine Reaktion darauf anpasst:

max⁡LeaderπL=P(Q)⋅QL−C(QL)\max_{\text{Leader}} \pi_L = P(Q) \cdot Q_L - C(Q_L)Leadermax​πL​=P(Q)⋅QL​−C(QL​) max⁡FollowerπF=P(Q)⋅QF−C(QF)\max_{\text{Follower}} \pi_F = P(Q) \cdot Q_F - C(Q_F)Followermax​πF​=P(Q)⋅QF​−C(QF​)

Hierbei ist P(Q)P(Q)P(Q) der Preis, der von der Gesamtmenge QQQ abhängt, QLQ_LQL​ und QFQ_FQF​ sind die Produktionsmengen des Leaders und Followers, und CCC ist die Kostenfunktion.

Wirtschaftsrente

Economic Rent bezeichnet den Überschuss, den ein Anbieter durch die Nutzung von Ressourcen oder Produktionsfaktoren erzielt, der über die minimalen Kosten hinausgeht, die erforderlich sind, um diese Ressourcen bereitzustellen. Diese Form der Rente entsteht oft, wenn bestimmte Ressourcen, wie z.B. Land oder spezielle Fähigkeiten, nur in begrenztem Umfang verfügbar sind. Der wirtschaftliche Nutzen kann mathematisch als die Differenz zwischen dem tatsächlichen Marktpreis PPP und dem minimalen Preis CCC, den der Anbieter akzeptieren würde, dargestellt werden:

Economic Rent=P−C\text{Economic Rent} = P - CEconomic Rent=P−C

Ein Beispiel wäre ein Grundstück in einer begehrten Lage, wo der Mieter bereit ist, einen höheren Preis zu zahlen, als es für den Vermieter notwendig ist, um die Immobilie zu erhalten. Economic Rent ist somit ein wichtiges Konzept in der Wohlfahrtsökonomie und spielt eine zentrale Rolle bei der Analyse von Marktverhältnissen und der Verteilung von Ressourcen.

Binomialmodell

Das Binomial Pricing ist ein Modell zur Bewertung von Finanzderivaten, insbesondere Optionen. Es basiert auf der Annahme, dass der Preis eines Basiswerts in diskreten Zeitintervallen entweder steigt oder fällt, wodurch ein binomialer Baum entsteht. In jedem Schritt des Modells wird der Preis des Basiswerts um einen bestimmten Faktor uuu (bei Anstieg) und um einen anderen Faktor ddd (bei Fall) verändert.

Die Wahrscheinlichkeiten für den Anstieg und den Fall werden oft als ppp und 1−p1-p1−p definiert. Um den aktuellen Wert einer Option zu berechnen, wird die erwartete Auszahlung in der Zukunft unter Berücksichtigung dieser Wahrscheinlichkeiten diskontiert. Der Vorteil des Binomialmodells liegt in seiner Flexibilität, da es für verschiedene Arten von Optionen und sogar für komplizierte Derivate angewendet werden kann. In der Praxis wird das Modell häufig genutzt, um den Preis von europäischen und amerikanischen Optionen zu bestimmen.