StudierendeLehrende

Brayton Cycle

Der Brayton-Zyklus ist ein thermodynamischer Prozess, der häufig in Gasturbinen und Flugtriebwerken verwendet wird. Er besteht aus vier Hauptschritten: Kompression, Verbrennung, Expansion und Abfuhr. Zunächst wird die Luft in einem Kompressor komprimiert, was zu einem Anstieg des Drucks und der Temperatur führt. Anschließend wird die komprimierte Luft in einer Brennkammer mit Kraftstoff vermischt und verbrannt, wodurch eine große Menge an Energie freigesetzt wird. Diese Energie wird dann genutzt, um eine Turbine anzutreiben, die die Luft expandiert und die Temperatur sowie den Druck wieder absenkt. Der Wirkungsgrad des Brayton-Zyklus kann durch die Verwendung von Mehrstufenkompressoren und Turbinen sowie durch die Implementierung von Regeneratoren zur Abwärmenutzung verbessert werden.

Die Effizienz des Zyklus kann durch die Formel η=1−T1T2\eta = 1 - \frac{T_1}{T_2}η=1−T2​T1​​ beschrieben werden, wobei T1T_1T1​ die Eintrittstemperatur und T2T_2T2​ die Austrittstemperatur der Luft darstellt.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Boltzmann-Entropie

Die Boltzmann-Entropie ist ein fundamentales Konzept in der statistischen Mechanik, das die Unordnung oder Zufälligkeit eines thermodynamischen Systems quantifiziert. Sie wird durch die berühmte Formel S=k⋅ln⁡(Ω)S = k \cdot \ln(\Omega)S=k⋅ln(Ω) beschrieben, wobei SSS die Entropie, kkk die Boltzmann-Konstante und Ω\OmegaΩ die Anzahl der möglichen Mikrozustände ist, die ein System bei gegebener Energie annehmen kann. Hierbei bedeutet ein höherer Wert von Ω\OmegaΩ, dass das System mehr zugängliche Mikrozustände hat, was zu einer höheren Entropie und somit zu größerer Unordnung führt. Diese Beziehung verdeutlicht, dass Entropie nicht nur ein Maß für Energieverteilung ist, sondern auch für die Wahrscheinlichkeit der Anordnung von Teilchen in einem System. In der Thermodynamik ist die Boltzmann-Entropie entscheidend für das Verständnis von Prozessen wie der Wärmeübertragung und der irreversiblen Veränderungen in einem System.

Stark korrelierte Elektronensysteme

Stark korrelierte Elektronensysteme sind Materialien, in denen die Wechselwirkungen zwischen Elektronen so stark sind, dass sie nicht unabhängig voneinander agieren können. In diesen Systemen sind die elektronischen Eigenschaften oft nicht durch einfache Modelle wie das freie Elektronengas oder die Hartree-Fock-Theorie beschrieben. Stattdessen müssen komplexere Ansätze wie die Dynamische Mean Field Theory (DMFT) oder die Korrelationstheorie berücksichtigt werden, um Phänomene wie Supraleitung, Magnetismus und Metall-Isolator-Übergänge zu verstehen.

Ein charakteristisches Merkmal dieser Systeme ist, dass die Elektronenkorrelationen zu emergenten Eigenschaften führen, die nicht aus dem Verhalten einzelner Elektronen abgeleitet werden können. Typische Beispiele für stark korrelierte Systeme sind Übergangsmetalloxide und Eisenbasierte Superleiter. In diesen Materialien ist das Verständnis der Wechselwirkungen entscheidend für die Erforschung neuer physikalischer Phänomene und potenzieller Anwendungen in der Nanoelektronik und Quantencomputing.

Hicksian-Dekomposition

Die Hicksian Decomposition ist ein Konzept aus der Mikroökonomie, das verwendet wird, um die Veränderungen in der Nachfrage nach Gütern aufgrund von Preisänderungen zu analysieren. Sie zerlegt die Gesamteffektivität einer Preisänderung in zwei Komponenten: den Substitutionseffekt und den Einkommenseffekt. Der Substitutionseffekt beschreibt, wie sich die Nachfrage nach einem Gut verändert, wenn sich dessen Preis im Vergleich zu anderen Gütern ändert, während der Einkommenseffekt die Veränderung der Nachfrage aufgrund der Änderung des realen Einkommens betrachtet, die durch die Preisänderung entsteht.

Mathematisch wird dies oft mit der Nachfragefunktion dargestellt, wobei die Hicksianische Nachfrage hhh als Funktion von Preisen und einem konstanten Nutzenniveau UUU betrachtet wird:

h(p,U)h(p, U)h(p,U)

In dieser Analyse wird häufig die Indifferenzkurve verwendet, um die verschiedenen Kombinationen von Gütern darzustellen, die denselben Nutzen bieten, wodurch der Einfluss der Preisänderungen auf die Konsumentscheidungen klarer wird.

Tcr-Pmhc Bindungsaffinität

Die Tcr-Pmhc Binding Affinity beschreibt die Stärke der Wechselwirkung zwischen dem T-Zell-Rezeptor (TCR) und dem Peptid-MHC-Komplex (Pmhc), der die spezifischen Antigenfragmente präsentiert. Diese Affinität ist entscheidend für die Aktivierung von T-Zellen und die darauf folgende Immunantwort. Eine hohe Bindungsaffinität bedeutet, dass der TCR fest an den Pmhc gebunden bleibt, was die Wahrscheinlichkeit erhöht, dass die T-Zelle aktiviert wird, um eine Immunreaktion gegen infizierte oder tumorale Zellen einzuleiten.

Die Bindungsaffinität kann durch verschiedene Parameter beschrieben werden, einschließlich der Dissoziationskonstante KdK_dKd​, die definiert ist als:

Kd=[TCR][Pmhc][TCR−Pmhc]K_d = \frac{[TCR][Pmhc]}{[TCR-Pmhc]}Kd​=[TCR−Pmhc][TCR][Pmhc]​

Hierbei ist ein niedrigerer KdK_dKd​-Wert ein Indikator für eine stärkere Bindung. Die Tcr-Pmhc-Bindungsaffinität hat daher bedeutende Implikationen für die Entwicklung von Immuntherapien und Impfstoffen, da sie die Effektivität der T-Zell-Aktivierung beeinflusst.

Pareto-Effizienz

Pareto Efficiency, auch als Pareto-Optimalität bekannt, ist ein Konzept aus der Wirtschaftswissenschaft, das eine Ressourcenzuteilung beschreibt, bei der es nicht möglich ist, jemanden besserzustellen, ohne dabei eine andere Person schlechterzustellen. In einem Zustand der Pareto-Effizienz sind alle Ressourcen so verteilt, dass jeder Nutzen maximiert ist, und jede Umverteilung der Ressourcen zu einer Person zu Lasten einer anderen Person führen würde.

Mathematisch ausgedrückt ist eine Verteilung von Ressourcen xxx Pareto-effizient, wenn es keinen anderen Punkt yyy gibt, so dass yyy mindestens eine Person besserstellt und keine Person schlechterstellt. Ein Beispiel zur Veranschaulichung: Angenommen, es gibt zwei Personen, A und B, und sie teilen sich einen Kuchen. Wenn A mehr Kuchen bekommt, kann B nur weniger bekommen, was bedeutet, dass die aktuelle Verteilung Pareto-effizient ist, solange es keine Möglichkeit gibt, beide besserzustellen.

Elektronenstrahllithographie

Electron Beam Lithography (EBL) ist ein präzises Verfahren zur Strukturierung von Materialien auf mikroskopischer Ebene, das häufig in der Halbleiterfertigung und der Nanotechnologie eingesetzt wird. Bei diesem Prozess wird ein fokussierter Elektronenstrahl auf ein beschichtetes Substrat gerichtet, das mit einem elektronensensitiven Material, dem sogenannten Resist, bedeckt ist. Durch die Wechselwirkung der Elektronen mit dem Resist werden bestimmte Bereiche des Materials chemisch verändert, was es ermöglicht, feine Muster zu erzeugen.

Die Auflösung von EBL kann bis in den Nanometerbereich reichen, was es zu einer idealen Technik für die Herstellung von Nanostrukturen und -schaltungen macht. Im Gegensatz zu traditionellen Lithographieverfahren bietet EBL die Flexibilität, komplexe Designs ohne die Notwendigkeit von Masken zu erstellen, was die Entwicklungszeit für Prototypen erheblich verkürzt. Allerdings ist die EBL im Vergleich zu anderen Lithographiemethoden oft langsamer und teurer, was ihre Anwendung auf spezifische Nischenmärkte beschränkt.