StudierendeLehrende

Cayley Graph Representations

Cayley-Diagramme sind eine grafische Darstellung von Gruppen, die eine Verbindung zwischen algebraischen Strukturen und Graphen herstellen. Ein Cayley-Graph wird für eine Gruppe GGG und eine Menge von Erzeugern SSS konstruiert, wobei jeder Knoten im Graphen ein Element der Gruppe repräsentiert. Zwei Knoten ggg und hhh sind durch eine Kante verbunden, wenn hhh durch die Anwendung eines Erzeugers s∈Ss \in Ss∈S auf ggg erreicht werden kann, d.h. h=gsh = gsh=gs.

Die Eigenschaften eines Cayley-Graphs sind vielfältig: Sie sind zusammenhängend, wenn die Erzeugermenge SSS die Gruppe vollständig abdeckt, und sie bieten Einblicke in die Struktur und Symmetrie der Gruppe. Cayley-Graphen sind ein wertvolles Werkzeug in der Algebra und der theoretischen Informatik, da sie helfen, die Beziehung zwischen verschiedenen Gruppen zu visualisieren und zu analysieren.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Fredholmsche Integralgleichung

Die Fredholm-Integralgleichung ist eine spezielle Form von Integralgleichungen, die in der Mathematik und ihren Anwendungen, insbesondere in der Physik und Ingenieurwissenschaften, eine wichtige Rolle spielt. Sie hat die allgemeine Form:

f(x)=λ∫abK(x,t)ϕ(t) dt+g(x)f(x) = \lambda \int_a^b K(x, t) \phi(t) \, dt + g(x)f(x)=λ∫ab​K(x,t)ϕ(t)dt+g(x)

Hierbei ist f(x)f(x)f(x) eine gegebene Funktion, K(x,t)K(x, t)K(x,t) der sogenannte Kern der Integralgleichung, ϕ(t)\phi(t)ϕ(t) die gesuchte Funktion, und g(x)g(x)g(x) eine Funktion, die in das Problem integriert wird. Der Parameter λ\lambdaλ ist ein Skalar, der oft als Eigenwert bezeichnet wird. Fredholm-Integralgleichungen werden in zwei Typen unterteilt: die erste Art, bei der g(x)=0g(x) = 0g(x)=0 ist, und die zweite Art, bei der g(x)g(x)g(x) nicht null ist. Diese Gleichungen sind besonders nützlich zur Beschreibung von physikalischen Phänomenen, wie z.B. bei der Lösung von Problemen in der Elektrodynamik oder der Quantenmechanik.

Arrow's Unmöglichkeit

Arrow's Impossibility, auch bekannt als das Unmöglichkeitstheorem von Arrow, ist ein fundamentales Konzept in der Sozialwahltheorie, das von dem Ökonomen Kenneth Arrow formuliert wurde. Es besagt, dass es kein Wahlsystem gibt, das alle folgenden drei Bedingungen gleichzeitig erfüllt, wenn es um die Aggregation individueller Präferenzen zu einer kollektiven Entscheidung geht:

  1. Nicht-Diktatur: Die Präferenzen der Gruppe sollten nicht vollständig von einer einzigen Person bestimmt werden.
  2. Pareto-Effizienz: Wenn alle Wähler eine bestimmte Option bevorzugen, sollte diese Option auch gewählt werden.
  3. Unabhängigkeit von irrelevanten Alternativen: Die Wahl zwischen zwei Optionen sollte nicht von der Verfügbarkeit einer dritten, irrelevanten Option beeinflusst werden.

Arrow zeigte, dass alle nützlichen Abstimmungssysteme in der Praxis eine dieser Bedingungen verletzen müssen, was zu der Schlussfolgerung führt, dass es unmöglich ist, ein perfektes Abstimmungssystem zu konstruieren, das den Ansprüchen der Fairness und Rationalität gerecht wird. Dies hat tiefgreifende Implikationen für die Entscheidungsfindung in demokratischen Systemen und für die Gestaltung von Abstimmungen.

Liquiditätspräferenz

Die Liquiditätspräferenz ist ein Konzept in der Geldtheorie, das beschreibt, wie Individuen und Institutionen eine Vorliebe für liquide Mittel haben, also für Geld oder geldnahe Vermögenswerte, die schnell und ohne Verlust in andere Vermögenswerte umgewandelt werden können. Diese Präferenz entsteht aus der Unsicherheit über zukünftige Ausgaben und der Notwendigkeit, kurzfristige Verpflichtungen zu erfüllen.

Die Liquiditätspräferenz wird oft in Beziehung zur Zinsrate gesetzt: Wenn die Zinsen steigen, bevorzugen die Menschen weniger liquide Mittel, da sie eine höhere Rendite aus anderen Anlageformen erwarten. Umgekehrt, wenn die Zinsen niedrig sind, tendieren die Menschen dazu, mehr Geld zu halten. Dies kann durch die folgende Beziehung verdeutlicht werden:

L=f(i,Y)L = f(i, Y)L=f(i,Y)

Hierbei ist LLL die Liquiditätsnachfrage, iii der Zinssatz und YYY das Einkommen. Die Liquiditätspräferenz hat bedeutende Auswirkungen auf die Geldpolitik und die allgemeine Wirtschaftslage, da sie die Kreditvergabe und die Investitionsentscheidungen beeinflusst.

Indifferenzkurve

Eine Indifferenzkurve ist ein Konzept aus der Mikroökonomie, das verwendet wird, um die Präferenzen eines Konsumenten darzustellen. Sie zeigt alle Kombinationen von zwei Gütern, bei denen der Konsument das gleiche Maß an Zufriedenheit oder Nutzen erreicht. Das bedeutet, dass der Konsument indifferent ist zwischen den verschiedenen Kombinationen dieser Güter.

Indifferenzkurven haben einige wichtige Eigenschaften:

  • Sie verlaufen nach außen, was bedeutet, dass mehr von einem Gut bei gleichbleibendem Nutzen zu einem höheren Gesamtnutzen führt.
  • Sie schneiden sich niemals, da dies eine Inkonsistenz in den Präferenzen des Konsumenten implizieren würde.
  • Die Steigung der Indifferenzkurve, auch als Grenzrate der Substitution (MRS) bezeichnet, gibt an, wie viel von einem Gut der Konsument bereit ist aufzugeben, um eine Einheit des anderen Gutes zu erhalten, ohne dass sich sein Nutzen ändert.

Mathematisch kann die MRS durch die Ableitung der Indifferenzkurve dargestellt werden, was zeigt, wie der Konsument die Güter gegeneinander eintauscht.

Preiselastizität der Nachfrage

Die Elastizität der Nachfrage ist ein Maß dafür, wie sensibel die nachgefragte Menge eines Gutes auf Änderungen des Preises reagiert. Sie wird berechnet als das Verhältnis der prozentualen Änderung der nachgefragten Menge zur prozentualen Änderung des Preises. Mathematisch wird dies durch die Formel ausgedrückt:

Ed=% A¨nderung der nachgefragten Menge% A¨nderung des PreisesE_d = \frac{\%\ \text{Änderung der nachgefragten Menge}}{\%\ \text{Änderung des Preises}}Ed​=% A¨nderung des Preises% A¨nderung der nachgefragten Menge​

Ein Wert von Ed>1E_d > 1Ed​>1 zeigt an, dass die Nachfrage elastisch ist, was bedeutet, dass eine Preisänderung zu einer überproportionalen Änderung der nachgefragten Menge führt. Umgekehrt bedeutet Ed<1E_d < 1Ed​<1, dass die Nachfrage unelastisch ist; eine Preisänderung hat nur geringe Auswirkungen auf die nachgefragte Menge. Faktoren wie Verfügbarkeit von Substitute, Notwendigkeit des Gutes und den Anteil des Einkommens, das für das Gut ausgegeben wird, beeinflussen die Elastizität der Nachfrage erheblich.

Dielektrische Elastomer-Aktoren

Dielectric Elastomer Actuators (DEAs) sind innovative Aktuatoren, die auf die Eigenschaften von elastischen Dielektrika basieren. Sie bestehen in der Regel aus einem elastischen Polymer, das zwischen zwei Elektroden platziert ist. Wenn eine elektrische Spannung angelegt wird, verursacht die elektrostatistische Anziehung zwischen den Elektroden eine Verformung des Materials. Diese Verformung kann in verschiedene Richtungen erfolgen und ermöglicht eine Vielzahl von Anwendungen, wie z.B. in der Robotik, Sensorik oder bei flexiblen Displays. DEAs sind besonders attraktiv, da sie eine hohe Energieeffizienz und eine hohe Kraft-Dichte bieten, wobei die Deformation oft mehrere Prozent der ursprünglichen Größe erreichen kann. Ihre Fähigkeit, sich leicht zu verformen, macht sie ideal für den Einsatz in weichen Robotern und adaptiven Strukturen.