StudierendeLehrende

Transcranial Magnetic Stimulation

Transkranielle Magnetstimulation (TMS) ist ein nicht-invasives Verfahren, das magnetische Felder nutzt, um neuronale Aktivität im Gehirn zu beeinflussen. Bei der TMS wird eine Spule auf die Kopfhaut platziert, durch die ein kurzer, starker elektrischer Impuls erzeugt wird. Dieser Impuls erzeugt ein Magnetfeld, das in das Gehirn eindringt und dort gezielt Nervenzellen stimuliert oder hemmt. TMS wird häufig in der Forschung und zunehmend auch in der klinischen Praxis eingesetzt, insbesondere zur Behandlung von Depressionen, Angststörungen und chronischen Schmerzen. Die Behandlung ist schmerzfrei und hat in der Regel nur wenige Nebenwirkungen, was sie zu einer attraktiven Option für Patienten macht, die auf herkömmliche Therapien nicht ansprechen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Mach-Zehnder-Interferometer

Das Mach-Zehnder Interferometer ist ein optisches Instrument, das zur Messung von Phasenverschiebungen und Interferenzmustern verwendet wird. Es besteht aus zwei Strahlteilern, die das einfallende Licht in zwei separate Strahlen aufteilen. Diese Strahlen durchlaufen unterschiedliche optische Pfade und werden anschließend wieder zusammengeführt. Durch die Überlagerung der beiden Strahlen entsteht ein Interferenzmuster, das von der relativen Phase der Strahlen abhängt.

Die Phasenverschiebung Δϕ\Delta \phiΔϕ zwischen den beiden Strahlen kann durch verschiedene Faktoren beeinflusst werden, wie z.B. Änderungen in der Umgebungstemperatur oder der Lichtquelle. Das Interferometer wird häufig in der Quantenoptik, der Messphysik und der Telekommunikation eingesetzt, um präzise Messungen durchzuführen und Informationen über die Eigenschaften des Lichtes zu gewinnen.

Hamming-Grenze

Der Hamming Bound ist eine wichtige Grenze in der Codierungstheorie, die angibt, wie viele Fehler ein Code korrigieren kann, ohne dass die Dekodierung fehlerhaft wird. Er definiert eine Beziehung zwischen der Codewortlänge nnn, der Anzahl der Fehler, die korrigiert werden können ttt, und der Anzahl der verwendeten Codewörter MMM. Mathematisch wird der Hamming Bound durch die folgende Ungleichung ausgedrückt:

M≤2n∑i=0t(ni)M \leq \frac{2^{n}}{\sum_{i=0}^{t} \binom{n}{i}}M≤∑i=0t​(in​)2n​

Hierbei ist (ni)\binom{n}{i}(in​) der Binomialkoeffizient, der die Anzahl der Möglichkeiten darstellt, iii Fehler in nnn Positionen zu wählen. Der Hamming Bound zeigt, dass die Anzahl der Codewörter in einem Fehlerkorrekturcode begrenzt ist, um sicherzustellen, dass die Codes eindeutig dekodiert werden können, auch wenn bis zu ttt Fehler auftreten. Wenn ein Code die Hamming-Grenze erreicht, wird er als perfekter Code bezeichnet, da er die maximale Anzahl an Codewörtern für eine gegebene Fehlerkorrekturfähigkeit nutzt.

Nichols-Diagramm

Ein Nichols Chart ist ein grafisches Werkzeug, das in der Regel in der Regelungstechnik verwendet wird, um die Stabilität und das Verhalten von dynamischen Systemen zu analysieren. Es stellt die Bode-Diagramme von offenen Schleifen und die Stabilitätsmargen in einem einzigen Diagramm dar. Die x-Achse zeigt die Frequenz in logarithmischer Skala, während die y-Achse die Verstärkung in dB und die Phase in Grad darstellt. Dies ermöglicht Ingenieuren, die Betriebsbedingungen eines Systems zu visualisieren und zu bestimmen, ob das System stabil ist oder nicht, indem sie die Kurven der offenen Schleifenübertragungsfunktion und der geschlossenen Schleifenübertragungsfunktion vergleichen. Ein weiterer Vorteil des Nichols Charts ist, dass es einfach ist, Reglerdesigns zu testen und zu optimieren, indem man die Position der Kurven im Diagramm anpasst.

Quantum Pumping

Quantum Pumping bezieht sich auf ein Phänomen in der Quantenmechanik, bei dem Elektronen oder andere quantenmechanische Teilchen in einem geschlossenen System durch zeitabhängige äußere Einflüsse bewegt werden, ohne dass ein externes elektrisches Feld angelegt wird. Dieses Konzept wird oft in der Festkörperphysik und Nanotechnologie untersucht, wo es möglich ist, durch periodische Veränderungen in der Struktur oder den Eigenschaften eines Materials, wie z.B. durch das Anlegen eines zeitlich variierenden Drucks oder einer elektrischen Spannung, eine Netto-Transportbewegung von Elektronen zu erzeugen.

Ein wichtiges Ergebnis dieses Prozesses ist, dass die Bewegung der Teilchen nicht nur von den Eigenschaften des Materials abhängt, sondern auch von der Frequenz und Amplitude der angewendeten Veränderungen. Quantum Pumping kann zur Entwicklung von neuartigen Quanten-Computern und Nanogeräten beitragen, da es ermöglicht, Informationen auf sehr präzise Weise zu steuern und zu transportieren. In mathematischer Form kann der Netto-Strom III als Funktion der Pumpfrequenz ω\omegaω und der Amplitude AAA beschrieben werden, wobei I∝A2⋅f(ω)I \propto A^2 \cdot f(\omega)I∝A2⋅f(ω) ist, wobei f(ω)f(\omega)f(ω) eine Funktion ist, die die spezifischen Eigenschaften des Materials berücksichtigt.

Zobrist-Hashing

Zobrist Hashing ist eine effiziente Methode zur Berechnung von Hash-Werten für Zustände in Spiele- und Kombinatorikproblemen, besonders in Spielen wie Schach oder Go. Dabei wird jedem möglichen Zustand eines Spielbretts eine eindeutige Zufallszahl zugewiesen. Die Hauptidee besteht darin, die Hash-Werte für die einzelnen Spielsteine an den verschiedenen Positionen des Brettes zu kombinieren, um den Gesamt-Hashwert zu berechnen.

Dies geschieht durch die Verwendung von exklusiven Oder (XOR)-Operationen, was bedeutet, dass der Hashwert durch H=H⊕hiH = H \oplus h_iH=H⊕hi​ für jeden Spielstein iii aktualisiert wird, wobei hih_ihi​ der Hashwert des Spielsteins an seiner Position ist. Der Vorteil dieser Methode ist, dass das Hinzufügen oder Entfernen von Spielsteinen nur eine konstante Zeitkomplexität O(1)O(1)O(1) benötigt, da die XOR-Operation sehr schnell ist. Dadurch wird Zobrist Hashing häufig in der künstlichen Intelligenz verwendet, um Zustände schnell zu vergleichen und Spielbäume effizient zu durchsuchen.

Kruskal-Algorithmus

Kruskal’s Algorithmus ist ein effizienter Greedy-Algorithmus zur Bestimmung des minimalen Spannbaums eines gewichteteten, ungerichteten Graphen. Der Algorithmus funktioniert, indem er alle Kanten des Graphen in aufsteigender Reihenfolge ihres Gewichts sortiert und dann die leichtesten Kanten hinzufügt, solange sie keinen Zyklus im wachsenden Spannbaum erzeugen. Hierzu wird eine Datenstruktur, oft ein Union-Find-Algorithmus, verwendet, um die Verbindungen zwischen den Knoten effizient zu verwalten. Die Schritte des Algorithmus sind:

  1. Sortiere die Kanten nach Gewicht.
  2. Initialisiere einen leeren Spannbaum.
  3. Füge die leichteste Kante hinzu, wenn sie keinen Zyklus bildet.
  4. Wiederhole diesen Prozess, bis n−1n-1n−1 Kanten im Spannbaum sind (wobei nnn die Anzahl der Knoten ist).

Am Ende liefert Kruskal's Algorithmus einen minimalen Spannbaum, der die Gesamtkosten der Kanten minimiert und alle Knoten des Graphen verbindet.