StudierendeLehrende

Recurrent Networks

Recurrent Networks, oft bezeichnet als Recurrent Neural Networks (RNNs), sind eine spezielle Klasse von neuronalen Netzwerken, die für die Verarbeitung von sequenziellen Daten entwickelt wurden. Im Gegensatz zu herkömmlichen Feedforward-Netzwerken können RNNs Informationen aus vorherigen Zeitschritten speichern und nutzen, was sie besonders geeignet für Aufgaben wie Spracherkennung, Textgenerierung und Zeitreihenanalyse macht. Die zentrale Idee ist, dass die Ausgabe eines Neurons nicht nur von den aktuellen Eingaben abhängt, sondern auch von vorherigen Zuständen, was durch Rückkopplungsschleifen erreicht wird.

Mathematisch lässt sich die Aktualisierung des verborgenen Zustands hth_tht​ eines RNNs wie folgt beschreiben:

ht=f(Whht−1+Wxxt)h_t = f(W_h h_{t-1} + W_x x_t)ht​=f(Wh​ht−1​+Wx​xt​)

Hierbei ist WhW_hWh​ die Gewichtsmatrix für den vorherigen Zustand, WxW_xWx​ die Gewichtsmatrix für den aktuellen Eingang xtx_txt​, und fff ist eine Aktivierungsfunktion. Diese Struktur ermöglicht es, Informationen über längere Zeiträume zu speichern, was eine Herausforderung für traditionelle Netzwerke darstellt. Allerdings leiden viele RNNs unter dem Problem des Vanishing Gradient, weshalb spezialisierte Architekturen wie Long Short-Term Memory (LSTM) und Gated Recurrent Units (GR

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Hume-Rothery-Regeln

Die Hume-Rothery-Regeln sind eine Reihe von Kriterien, die zur Vorhersage und Erklärung der Mischbarkeit von Metallen in Legierungen verwendet werden. Diese Regeln basieren auf den Eigenschaften der Atome und ihrer Struktur und umfassen mehrere Schlüsselfaktoren:

  1. Atomgröße: Die Atome der Legierungsbestandteile sollten eine ähnliche Größe aufweisen. Eine Differenz von weniger als 15% im Atomradius fördert die Mischbarkeit.
  2. Kristallstruktur: Die beiden Metalle sollten die gleiche oder eine kompatible Kristallstruktur besitzen, um eine homogene Mischung zu ermöglichen.
  3. Chemische Affinität: Die chemische Ähnlichkeit der Elemente, d. h. ihre Position im Periodensystem, ist entscheidend. Elemente, die nahe beieinander liegen, tendieren dazu, besser mischbar zu sein.
  4. Valenz: Eine ähnliche Anzahl von Valenzelektronen kann ebenfalls die Mischbarkeit beeinflussen; Elemente mit der gleichen Valenz tendieren dazu, sich besser zu mischen.

Diese Regeln sind besonders hilfreich in der Metallurgie und Materialwissenschaft, um die Herstellung von Legierungen mit gewünschten Eigenschaften zu optimieren.

Arrow's Unmöglichkeitstheorem

Das Arrow'sche Unmöglichkeitstheorem, formuliert von Kenneth Arrow in den 1950er Jahren, besagt, dass es unter bestimmten Bedingungen unmöglich ist, eine ideale Wahlmethode zu finden, die die Präferenzen einer Gruppe von Individuen in eine kollektive Entscheidung umwandelt. Insbesondere stellt das Theorem fest, dass kein Abstimmungssystem alle folgenden fünf Bedingungen gleichzeitig erfüllen kann:

  1. Vollständigkeit: Für jede mögliche Wahl muss ein Ranking existieren.
  2. Transitivität: Wenn A über B und B über C bevorzugt wird, dann sollte auch A über C bevorzugt werden.
  3. Unabhängigkeit von irrelevanten Alternativen: Die Präferenz zwischen zwei Alternativen sollte unabhängig von der Einführung oder Entfernung einer dritten Option bleiben.
  4. Nicht-Diktatur: Es darf keinen Wähler geben, dessen Präferenzen die endgültige Entscheidung unabhängig von den anderen Wählern dominieren.
  5. Bestrafung: Wenn alle Wähler eine bestimmte Option bevorzugen, sollte diese Option auch gewählt werden.

Das Theorem zeigt, dass es kein perfektes Abstimmungssystem gibt, das diese Bedingungen erfüllt, was erhebliche Implikationen für die politische Theorie und die Wirtschaft hat. Es verdeutlicht die Schwierigkeiten bei der Aggregation individueller Präferenzen zu einer konsistenten kollektiven Entscheidung.

Mikroökonomische Elastizität

Die Mikroökonomie beschäftigt sich mit dem Verhalten von Einzelpersonen und Unternehmen in Bezug auf die Zuteilung von Ressourcen und die Erstellung von Gütern und Dienstleistungen. Ein zentrales Konzept in der Mikroökonomie ist die Elastizität, die misst, wie empfindlich die Nachfrage oder das Angebot eines Gutes auf Änderungen von Preis oder Einkommen reagiert. Es gibt verschiedene Arten von Elastizitäten, wobei die Preis-Elastizität der Nachfrage und die Preis-Elastizität des Angebots die bekanntesten sind.

Die Preis-Elastizität der Nachfrage wird definiert als:

Ed=% A¨nderung der Nachfragemenge% A¨nderung des PreisesE_d = \frac{\%\ \text{Änderung der Nachfragemenge}}{\%\ \text{Änderung des Preises}}Ed​=% A¨nderung des Preises% A¨nderung der Nachfragemenge​

Eine Elastizität größer als 1 zeigt an, dass die Nachfrage elastisch ist, d.h., die Konsumenten reagieren stark auf Preisänderungen. Im Gegensatz dazu zeigt eine Elastizität kleiner als 1, dass die Nachfrage unelastisch ist, was bedeutet, dass die Konsumenten weniger empfindlich auf Preisänderungen reagieren. Die Analyse der Elastizität ist entscheidend für Unternehmen, um Preisstrategien zu entwickeln und den Umsatz zu maximieren.

MOSFET-Schwellenspannung

Die Threshold Voltage (Schwellenspannung) eines MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) ist die Mindestspannung, die an das Gate angelegt werden muss, um den Transistor in den leitenden Zustand zu versetzen. Unterhalb dieser Spannung bleibt der MOSFET im ausgeschalteten Zustand, wodurch der Stromfluss zwischen Source und Drain minimal ist. Sobald die Schwellenspannung erreicht ist, entsteht ein leitfähiger Kanal zwischen Source und Drain, und der MOSFET kann den Strom steuern.

Die Schwellenspannung hängt von verschiedenen Faktoren ab, darunter die Materialeigenschaften, die Geometrie des Transistors und die Dotierung des Halbleitermaterials. Sie kann durch die Gleichung

Vth=VFB+ΦF+QinvCoxV_{th} = V_{FB} + \Phi_{F} + \frac{Q_{inv}}{C_{ox}}Vth​=VFB​+ΦF​+Cox​Qinv​​

beschrieben werden, wobei VFBV_{FB}VFB​ die Flachbandspannung, ΦF\Phi_{F}ΦF​ das Fermi-Niveau und QinvQ_{inv}Qinv​ die Inversionsladung darstellt. Ein tiefes Verständnis der Schwellenspannung ist entscheidend für die Entwicklung effizienter Schaltkreise und die Optimierung der Leistung von elektronischen Geräten.

Plasmonische Metamaterialien

Plasmonic Metamaterials sind künstlich geschaffene Materialien, die einzigartige optische Eigenschaften aufweisen, die in der Natur nicht vorkommen. Sie nutzen die Wechselwirkung zwischen Licht und den kollektiven Schwingungen der Elektronen an der Oberfläche von Metallen, bekannt als Plasmonen. Diese Materialien können Licht bei Wellenlängen steuern, die kleiner als die Struktur selbst sind, was zu Phänomenen wie Superlensing und Holo-Optik führt. Plasmonic Metamaterials finden Anwendung in verschiedenen Bereichen, darunter die Sensorik, die Photovoltaik und die Nanophotonik. Eine der bemerkenswertesten Eigenschaften ist die Fähigkeit, elektromagnetische Wellen zu fokussieren und zu manipulieren, was die Entwicklung neuartiger Technologien ermöglicht, die über die Grenzen der klassischen Optik hinausgehen.

Tunnel-Diodenbetrieb

Eine Tunnel-Diode ist ein spezieller Halbleiterbauelement, das durch den quantenmechanischen Tunnel-Effekt funktioniert. Im Gegensatz zu herkömmlichen Dioden, die eine Schwelle benötigen, um leitend zu werden, zeigt die Tunnel-Diode ein negatives Widerstandsverhalten in einem bestimmten Spannungsbereich. Dies bedeutet, dass der Strom nicht nur bei steigender Spannung zunimmt, sondern auch abnimmt, was zu einer charakteristischen I-V-Kurve führt.

Die Funktionsweise der Tunnel-Diode beruht auf der starken Dotierung von p- und n-Typ-Halbleitermaterialien, was zu einer sehr dünnen pn-Übergangsregion führt. Wenn eine Spannung an die Diode angelegt wird, können Elektronen durch den Energiebarriere tunneln, selbst wenn die Spannung unter der sogenannten Durchbruchsspannung liegt. Dieses Verhalten ermöglicht Anwendungen in hochfrequenten Schaltungen und als Schalter in digitalen Logikschaltungen.