StudierendeLehrende

Recurrent Networks

Recurrent Networks, oft bezeichnet als Recurrent Neural Networks (RNNs), sind eine spezielle Klasse von neuronalen Netzwerken, die für die Verarbeitung von sequenziellen Daten entwickelt wurden. Im Gegensatz zu herkömmlichen Feedforward-Netzwerken können RNNs Informationen aus vorherigen Zeitschritten speichern und nutzen, was sie besonders geeignet für Aufgaben wie Spracherkennung, Textgenerierung und Zeitreihenanalyse macht. Die zentrale Idee ist, dass die Ausgabe eines Neurons nicht nur von den aktuellen Eingaben abhängt, sondern auch von vorherigen Zuständen, was durch Rückkopplungsschleifen erreicht wird.

Mathematisch lässt sich die Aktualisierung des verborgenen Zustands hth_tht​ eines RNNs wie folgt beschreiben:

ht=f(Whht−1+Wxxt)h_t = f(W_h h_{t-1} + W_x x_t)ht​=f(Wh​ht−1​+Wx​xt​)

Hierbei ist WhW_hWh​ die Gewichtsmatrix für den vorherigen Zustand, WxW_xWx​ die Gewichtsmatrix für den aktuellen Eingang xtx_txt​, und fff ist eine Aktivierungsfunktion. Diese Struktur ermöglicht es, Informationen über längere Zeiträume zu speichern, was eine Herausforderung für traditionelle Netzwerke darstellt. Allerdings leiden viele RNNs unter dem Problem des Vanishing Gradient, weshalb spezialisierte Architekturen wie Long Short-Term Memory (LSTM) und Gated Recurrent Units (GR

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Graph-Homomorphismus

Ein Graph Homomorphismus ist eine spezielle Art von Abbildung zwischen zwei Graphen, die die Struktur der Graphen respektiert. Formal gesagt, seien G=(VG,EG)G = (V_G, E_G)G=(VG​,EG​) und H=(VH,EH)H = (V_H, E_H)H=(VH​,EH​) zwei Graphen. Eine Funktion f:VG→VHf: V_G \rightarrow V_Hf:VG​→VH​ ist ein Graph Homomorphismus, wenn für jede Kante (u,v)∈EG(u, v) \in E_G(u,v)∈EG​ gilt, dass (f(u),f(v))∈EH(f(u), f(v)) \in E_H(f(u),f(v))∈EH​. Dies bedeutet, dass benachbarte Knoten in GGG auf benachbarte Knoten in HHH abgebildet werden.

Graph Homomorphismen sind nützlich in verschiedenen Bereichen der Mathematik und Informatik, insbesondere in der Graphentheorie und der theoretischen Informatik. Sie können verwendet werden, um Probleme zu lösen, die mit der Struktur von Graphen zusammenhängen, wie z.B. bei der Modellierung von Netzwerken oder der Analyse von Beziehungen in sozialen Netzwerken.

Crispr-Gentechnik

Crispr Gene Editing ist eine revolutionäre Methode zur gezielten Veränderung von DNA in lebenden Organismen. Diese Technik basiert auf einem natürlichen Abwehrmechanismus von Bakterien, die DNA-Sequenzen nutzen, um sich gegen Viren zu verteidigen. Bei der Anwendung von Crispr wird ein spezifisches RNA-Molekül, das als Guide RNA bezeichnet wird, verwendet, um die Ziel-DNA zu finden, während ein Enzym namens Cas9 als „Schere“ dient, um den DNA-Strang an der gewünschten Stelle zu schneiden. Diese gezielten Schnitte ermöglichen es Wissenschaftlern, Gene zu deaktivieren, zu ersetzen oder sogar neue Gene einzufügen. Die Vielseitigkeit und Genauigkeit des Crispr-Systems haben es zu einem wichtigen Werkzeug in der Genforschung, der Medizin und der Landwirtschaft gemacht. Insgesamt bietet Crispr enorme Potenziale für die Heilung von genetischen Erkrankungen und die Verbesserung von Nutzpflanzen.

Ferroelectric-Hochschichtdünnfilme

Ferroelectric Thin Films sind dünne Schichten von ferroelectricen Materialien, die eine spontane Polarisation aufweisen, die umkehrbar ist. Diese Materialien sind charakterisiert durch ihre Fähigkeit, die elektrische Polarisation in Abhängigkeit von einem externen elektrischen Feld zu ändern, was sie für Anwendungen in der Speichertechnologie, Sensorik und Aktuatorik besonders interessant macht. Die Herstellung dieser Filme erfolgt häufig durch Techniken wie Molekularstrahlepitaxie oder Sputtern, um eine präzise Kontrolle über die Schichtdicke und -qualität zu gewährleisten.

Die Eigenschaften von ferroelectricen Dünnschichten sind stark von ihrer Struktur und Morphologie abhängig. Beispielsweise kann die Kristallstruktur durch die Substratmaterialien und Wachstumsbedingungen beeinflusst werden, was zu unterschiedlichen elektrischen Eigenschaften führt. Zudem ermöglicht die Kombination von Ferroelectricität mit anderen Funktionalitäten, wie in Multifunktionalen Materialien, innovative Anwendungen in der Nanoelektronik und der Energieumwandlung.

Photonische Kristallgestaltung

Das Design von photonischen Kristallen bezieht sich auf die gezielte Gestaltung von Materialien, die eine regelmäßige Struktur aufweisen und die Wechselwirkung von Licht mit Materie steuern können. Diese Kristalle haben eine periodische Anordnung von Materialien mit unterschiedlichen Brechungsindices, was zu einem Phänomen führt, das als Bandlücken bekannt ist. In diesen Bandlücken kann Licht bestimmter Frequenzen nicht propagieren, wodurch photonische Kristalle als Filter oder Wellenleiter fungieren.

Ein typisches Beispiel sind photonic crystal fibers, die durch ihr Design eine hochgradige Kontrolle über die Lichtausbreitung bieten. Die mathematische Beschreibung solcher Strukturen erfolgt oft durch die Lösung der Maxwell-Gleichungen, wobei die Strukturparameter wie Periodizität und Brechungsindex entscheidend sind. Die Anwendungsmöglichkeiten reichen von optischen Komponenten in der Telekommunikation bis hin zu Sensoren und Quantencomputing.

Multigrid-Löser

Ein Multigrid Solver ist ein effizientes numerisches Verfahren zur Lösung von partiellen Differentialgleichungen (PDEs), das besonders bei großen und komplexen Problemen von Vorteil ist. Der Grundgedanke besteht darin, das Fehlerverhalten auf verschiedenen Skalen zu analysieren und zu nutzen, um die Konvergenzgeschwindigkeit der Lösung zu erhöhen. Dabei werden mehrere Gitterebenen verwendet, um sowohl grobe als auch feine Details der Lösung zu erfassen.

Der Prozess beinhaltet typischerweise die folgenden Schritte:

  1. Smoothing: Reduzierung des hochfrequenten Fehlers durch iterative Verfahren auf dem feinsten Gitter.
  2. Restriction: Übertragung der Fehlerinformation auf ein gröberes Gitter.
  3. Coarse Grid Correction: Lösung des Problems auf dem groben Gitter und Rückübertragung der Korrektur auf das feine Gitter.
  4. Interpolation: Übertragung der Lösung von dem groben Gitter auf das feine Gitter.

Durch die Kombination dieser Schritte ermöglicht ein Multigrid Solver eine deutlich schnellere Konvergenz als herkömmliche iterative Verfahren, wodurch die Rechenzeit und der Ressourcenverbrauch erheblich reduziert werden.

Hurst-Exponent-Zeitreihenanalyse

Der Hurst-Exponent ist ein Maß, das verwendet wird, um das Verhalten und die Eigenschaften von Zeitreihen zu analysieren. Er wurde ursprünglich in der Hydrologie entwickelt, um das Langzeitverhalten von Flussdaten zu untersuchen, findet jedoch auch Anwendung in vielen anderen Bereichen wie der Finanzwirtschaft und der Klimaforschung. Der Hurst-Exponent HHH kann Werte zwischen 0 und 1 annehmen und gibt Aufschluss darüber, ob eine Zeitreihe trendsicher, zufällig oder regressiv ist. Die Interpretation ist wie folgt:

  • H<0.5H < 0.5H<0.5: Die Zeitreihe weist ein regressives Verhalten auf, was bedeutet, dass zukünftige Werte tendenziell unter dem Durchschnitt liegen.
  • H=0.5H = 0.5H=0.5: Die Zeitreihe ist zufällig (ähnlich einer Brownschen Bewegung), was bedeutet, dass es keine erkennbare Richtung oder Trends gibt.
  • H>0.5H > 0.5H>0.5: Die Zeitreihe zeigt ein trendsicheres Verhalten, was darauf hindeutet, dass zukünftige Werte tendenziell über dem Durchschnitt liegen.

Die Berechnung des Hurst-Exponenten erfolgt oft durch die Analyse der Langzeitkorrelationen in der Zeitreihe, beispielsweise mittels der Rescaled Range Analysis (R/S-Methode).