StudierendeLehrende

Edge Computing Architecture

Edge Computing Architecture bezieht sich auf ein dezentrales Rechenmodell, bei dem Datenverarbeitung und Analyse näher an der Quelle der Datenerzeugung stattfinden, anstatt in zentralisierten Cloud-Rechenzentren. Dies geschieht häufig durch die Nutzung von Edge-Geräten, die an verschiedenen Standorten, wie zum Beispiel IoT-Geräten, Sensoren oder lokalen Servern, platziert sind. Die Hauptvorteile dieser Architektur sind reduzierte Latenzzeiten, da Daten nicht über große Entfernungen gesendet werden müssen, sowie eine erhöhte Bandbreitenoptimierung, da nur relevante Daten an die Cloud gesendet werden.

Die Edge Computing Architecture kann in folgende Schichten unterteilt werden:

  1. Edge Layer: Umfasst die physischen Geräte und Sensoren, die Daten erzeugen.
  2. Edge Processing Layer: Hier findet die erste Datenverarbeitung statt, oft direkt auf den Geräten oder in der Nähe.
  3. Data Aggregation Layer: Diese Schicht aggregiert und filtert die Daten, bevor sie an die Cloud gesendet werden.
  4. Cloud Layer: Bietet eine zentrale Plattform für tiefere Analysen und langfristige Datenspeicherung.

Durch diese Struktur wird nicht nur die Effizienz erhöht, sondern auch die Sicherheit verbessert, da sensible Daten lokal verarbeitet werden können.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Hydraulisches Modellieren

Hydraulic Modeling ist ein wichtiges Werkzeug in der Ingenieurwissenschaft, das verwendet wird, um das Verhalten von Flüssigkeiten in verschiedenen Systemen zu simulieren und zu analysieren. Diese Modelle können sowohl physikalisch als auch numerisch sein und helfen Ingenieuren, die Strömung von Wasser in Flüssen, Kanälen oder städtischen Abwassersystemen zu verstehen. Durch die Anwendung von mathematischen Gleichungen, wie der Bernoulli-Gleichung oder den Navier-Stokes-Gleichungen, können verschiedene Szenarien untersucht werden, um die Auswirkungen von Änderungen in der Geometrie oder den Betriebsbedingungen zu bewerten.

Zu den häufigsten Anwendungen von Hydraulic Modeling gehören:

  • Hochwassermanagement: Vorhersage von Überflutungen und Entwicklung von Schutzmaßnahmen.
  • Wasserverteilungssysteme: Optimierung der Druckverhältnisse und Identifizierung von Leckagen.
  • Umweltstudien: Untersuchung der Auswirkungen von menschlichen Aktivitäten auf natürliche Wasserressourcen.

Durch die Verwendung von hydraulischen Modellen können Ingenieure fundierte Entscheidungen treffen und die Effizienz sowie die Sicherheit von Wassersystemen verbessern.

VCO-Frequenzsynthese

VCO-Frequenzsynthese ist ein Verfahren zur Erzeugung von präzisen Frequenzen durch die Verwendung eines Spannungsgesteuerten Oszillators (VCO). Der VCO erzeugt eine Ausgangsfrequenz, die in direktem Verhältnis zur angelegten Spannung steht, was bedeutet, dass die Frequenz durch Variationen der Eingangsspannung kontrolliert werden kann. Um verschiedene Frequenzen zu erzeugen, wird häufig ein Phasenregelschleifen (PLL)-System eingesetzt, das den VCO mit einer Referenzfrequenz verknüpft, um die gewünschte Ausgangsfrequenz zu erreichen.

Der Syntheseprozess kann in folgende Schritte unterteilt werden:

  1. Eingangssignal: Eine Referenzfrequenz wird bereitgestellt.
  2. Phasenvergleich: Der Phasenregler vergleicht die Phasen der Referenzfrequenz und der VCO-Ausgangsfrequenz.
  3. Steuerungssignal: Basierend auf dem Phasenunterschied wird ein Steuerungssignal generiert, um die Eingangs-DC-Spannung des VCO zu modifizieren.
  4. Frequenzausgabe: Der VCO passt seine Frequenz an die gewünschte Frequenz an.

Durch diese Methode können sehr präzise und stabile Frequenzen

Exzitonrekombination

Die Exciton-Rekombination ist ein physikalischer Prozess, der in Halbleitern und anderen Materialien auftritt, wenn ein gebundener Zustand aus einem Elektron und einem Loch, bekannt als Exciton, zerfällt. Bei der Rekombination kann das Exciton in einen energetisch niedrigeren Zustand übergehen, wobei die Energie in Form von Photonen (Licht) oder Wärme freigesetzt wird. Dieser Prozess ist von zentraler Bedeutung für das Verständnis von optoelektronischen Bauelementen, wie z.B. Solarzellen und LEDs.

Die Rekombination kann in verschiedenen Formen auftreten, darunter:

  • Strahlende Rekombination: Hierbei wird ein Photon emittiert.
  • Nicht-strahlende Rekombination: Bei dieser Art wird die Energie in Form von Wärme dissipiert, ohne Licht zu erzeugen.

Mathematisch kann die Rekombinationsrate RRR häufig durch die Beziehung R=βnpR = \beta n pR=βnp beschrieben werden, wobei nnn die Elektronenkonzentration, ppp die Lochkonzentration und β\betaβ eine Rekombinationskonstante ist.

K-Means Clustering

K-Means Clustering ist ein beliebter Algorithmus zur Gruppierung von Datenpunkten in Cluster, die anhand ihrer Ähnlichkeit definiert werden. Der Algorithmus funktioniert in mehreren Schritten: Zunächst wird eine vorgegebene Anzahl kkk von Clustern festgelegt, und zufällig werden kkk Datenpunkte als Ausgangszentren (Centroids) ausgewählt. Dann werden die restlichen Datenpunkte jedem Cluster zugewiesen, basierend auf der minimalen euklidischen Distanz zu den Centroids. Diese Zuweisung wird iterativ angepasst, indem die Centroids neu berechnet werden, bis die Positionen der Centroids stabil sind und sich nicht mehr signifikant ändern. Der Algorithmus zielt darauf ab, die Gesamtvarianz innerhalb der Cluster zu minimieren, was oft durch die Minimierung der Kostenfunktion erreicht wird, die wie folgt definiert ist:

J=∑i=1k∑xj∈Ci∥xj−μi∥2J = \sum_{i=1}^{k} \sum_{x_j \in C_i} \| x_j - \mu_i \|^2J=i=1∑k​xj​∈Ci​∑​∥xj​−μi​∥2

Hierbei ist μi\mu_iμi​ der Centroid des Clusters CiC_iCi​ und xjx_jxj​ sind die Datenpunkte innerhalb dieses Clusters. K-Means ist einfach zu implementieren und effizient, hat jedoch einige Einschränkungen, wie die Sensitivität gegenüber der Wahl von $ k

Entropietrennung

Der Begriff Entropy Split stammt aus der Informationstheorie und wird häufig in der Entscheidungsbaum-Lernalgorithmen verwendet, um die beste Aufteilung von Daten zu bestimmen. Die Entropie ist ein Maß für die Unordnung oder Unsicherheit in einem Datensatz. Bei einer Aufteilung wird die Entropie vor und nach der Aufteilung berechnet, um zu bestimmen, wie gut die Aufteilung die Unsicherheit verringert.

Die Entropie H(S)H(S)H(S) eines Datensatzes SSS wird durch die Formel

H(S)=−∑i=1cpilog⁡2(pi)H(S) = -\sum_{i=1}^{c} p_i \log_2(p_i)H(S)=−i=1∑c​pi​log2​(pi​)

definiert, wobei pip_ipi​ der Anteil der Klasse iii im Datensatz und ccc die Anzahl der Klassen ist. Bei einem Entropy Split wird der Informationsgewinn IGIGIG berechnet, um die Effektivität einer Aufteilung zu bewerten. Der Informationsgewinn wird als Differenz der Entropie vor und nach der Aufteilung berechnet:

IG(S,A)=H(S)−∑v∈Values(A)∣Sv∣∣S∣H(Sv)IG(S, A) = H(S) - \sum_{v \in \text{Values}(A)} \frac{|S_v|}{|S|} H(S_v)IG(S,A)=H(S)−v∈Values(A)∑​∣S∣∣Sv​∣​H(Sv​)

Hierbei ist AAA die Attribut, nach dem aufgeteilt wird, und SvS_vSv​ ist die Teilmenge von $

Lagrange-Multiplikatoren

Die Methode der Lagrange-Multiplikatoren ist eine Technik in der Optimierung, die verwendet wird, um die Extremwerte einer Funktion unter Berücksichtigung von Nebenbedingungen zu finden. Angenommen, wir wollen die Funktion f(x,y)f(x, y)f(x,y) maximieren oder minimieren, während wir eine Nebenbedingung g(x,y)=cg(x, y) = cg(x,y)=c einhalten müssen. Der Schlüsselgedanke dieser Methode besteht darin, dass wir die Funktion L(x,y,λ)=f(x,y)+λ(c−g(x,y))L(x, y, \lambda) = f(x, y) + \lambda (c - g(x, y))L(x,y,λ)=f(x,y)+λ(c−g(x,y)) einführen, wobei λ\lambdaλ der Lagrange-Multiplikator ist.

Um die Extrempunkte zu finden, setzen wir die partiellen Ableitungen von LLL gleich Null:

∂L∂x=0,∂L∂y=0,∂L∂λ=0\frac{\partial L}{\partial x} = 0, \quad \frac{\partial L}{\partial y} = 0, \quad \frac{\partial L}{\partial \lambda} = 0∂x∂L​=0,∂y∂L​=0,∂λ∂L​=0

Diese Gleichungen führen zu einem System von Gleichungen, das gelöst werden muss, um die Werte von x,yx, yx,y und λ\lambdaλ zu bestimmen. Die Lagrange-Multiplikatoren geben dabei Hinweise darauf, wie sich die Funktion fff entlang der Restriktion ggg verhält und helfen, die Beziehung zwischen den