Edge Computing Architecture

Edge Computing Architecture bezieht sich auf ein dezentrales Rechenmodell, bei dem Datenverarbeitung und Analyse näher an der Quelle der Datenerzeugung stattfinden, anstatt in zentralisierten Cloud-Rechenzentren. Dies geschieht häufig durch die Nutzung von Edge-Geräten, die an verschiedenen Standorten, wie zum Beispiel IoT-Geräten, Sensoren oder lokalen Servern, platziert sind. Die Hauptvorteile dieser Architektur sind reduzierte Latenzzeiten, da Daten nicht über große Entfernungen gesendet werden müssen, sowie eine erhöhte Bandbreitenoptimierung, da nur relevante Daten an die Cloud gesendet werden.

Die Edge Computing Architecture kann in folgende Schichten unterteilt werden:

  1. Edge Layer: Umfasst die physischen Geräte und Sensoren, die Daten erzeugen.
  2. Edge Processing Layer: Hier findet die erste Datenverarbeitung statt, oft direkt auf den Geräten oder in der Nähe.
  3. Data Aggregation Layer: Diese Schicht aggregiert und filtert die Daten, bevor sie an die Cloud gesendet werden.
  4. Cloud Layer: Bietet eine zentrale Plattform für tiefere Analysen und langfristige Datenspeicherung.

Durch diese Struktur wird nicht nur die Effizienz erhöht, sondern auch die Sicherheit verbessert, da sensible Daten lokal verarbeitet werden können.

Weitere verwandte Begriffe

PWM-Modulation

Die Pulsweitenmodulation (PWM) ist eine Technik zur Steuerung der Leistung an elektrischen Geräten, indem das Verhältnis von Ein- und Ausschaltzeiten eines Signals variiert wird. Bei PWM wird ein digitales Signal mit einer konstanten Frequenz erzeugt, dessen Pulsbreite (die Zeit, in der das Signal auf "hoch" steht) moduliert wird, um die effektive Spannung zu steuern. Das bedeutet, dass je länger der Puls im Vergleich zur Gesamtperiode ist, desto mehr Energie wird zum Verbraucher geleitet.

Die PWM kann mathematisch durch die Duty-Cycle-Formel beschrieben werden:

Duty Cycle(%)=(TONTON+TOFF)×100\text{Duty Cycle} (\%) = \left( \frac{T_{ON}}{T_{ON} + T_{OFF}} \right) \times 100

wobei TONT_{ON} die Zeit ist, in der das Signal aktiv ist, und TOFFT_{OFF} die Zeit, in der das Signal inaktiv ist. Diese Methode findet breite Anwendung in der Steuerung von Motoren, der Dimmtechnik für LEDs und in der Regelung von Heizsystemen, da sie eine präzise Kontrolle der Leistung bei minimalem Energieverlust ermöglicht.

Binomialmodell

Das Binomial Pricing ist ein Modell zur Bewertung von Finanzderivaten, insbesondere Optionen. Es basiert auf der Annahme, dass der Preis eines Basiswerts in diskreten Zeitintervallen entweder steigt oder fällt, wodurch ein binomialer Baum entsteht. In jedem Schritt des Modells wird der Preis des Basiswerts um einen bestimmten Faktor uu (bei Anstieg) und um einen anderen Faktor dd (bei Fall) verändert.

Die Wahrscheinlichkeiten für den Anstieg und den Fall werden oft als pp und 1p1-p definiert. Um den aktuellen Wert einer Option zu berechnen, wird die erwartete Auszahlung in der Zukunft unter Berücksichtigung dieser Wahrscheinlichkeiten diskontiert. Der Vorteil des Binomialmodells liegt in seiner Flexibilität, da es für verschiedene Arten von Optionen und sogar für komplizierte Derivate angewendet werden kann. In der Praxis wird das Modell häufig genutzt, um den Preis von europäischen und amerikanischen Optionen zu bestimmen.

Kreditmittel

Der Begriff Loanable Funds bezieht sich auf den Gesamtbetrag an Geld, der für Kredite zur Verfügung steht, und umfasst sowohl die Ersparnisse der Haushalte als auch die Mittel, die von Institutionen zur Verfügung gestellt werden. In diesem Kontext spielen Zinsen eine zentrale Rolle, da sie den Preis des Kredits darstellen und somit das Angebot und die Nachfrage nach geliehenem Geld beeinflussen.

Das Angebot an loanable funds wird hauptsächlich von den Ersparnissen der privaten Haushalte und von Unternehmen erzeugt, während die Nachfrage nach diesen Mitteln von Investitionen, staatlichen Ausgaben und dem Konsumverhalten abhängt. Der Zins ist ein entscheidender Faktor, der das Gleichgewicht zwischen Angebot und Nachfrage bestimmt: Ein höherer Zins könnte das Angebot erhöhen, während eine höhere Nachfrage nach Krediten die Zinsen steigen lassen könnte.

Zusammenfassend lässt sich sagen, dass der Markt für Loanable Funds eine essenzielle Rolle in der Wirtschaft spielt, indem er die Verteilung von Kapital für Investitionen und Konsum ermöglicht, was wiederum das Wachstum und die wirtschaftliche Stabilität fördert.

Mittlerer Wertsatz

Der Mean Value Theorem (Mittelwertsatz) ist ein zentraler Satz der Analysis, der eine wichtige Verbindung zwischen der Ableitung einer Funktion und ihrem Verhalten auf einem Intervall herstellt. Der Satz besagt, dass, wenn eine Funktion ff auf einem geschlossenen Intervall [a,b][a, b] stetig ist und dort differenzierbar ist (also die Ableitung ff' existiert) im offenen Intervall (a,b)(a, b), dann gibt es mindestens einen Punkt cc in (a,b)(a, b), so dass gilt:

f(c)=f(b)f(a)baf'(c) = \frac{f(b) - f(a)}{b - a}

Dies bedeutet, dass es einen Punkt cc gibt, an dem die Steigung der Tangente (d.h. die Ableitung f(c)f'(c)) gleich der mittleren Steigung der Funktion über das Intervall [a,b][a, b] ist. In einfacher Sprache bedeutet dies, dass die Funktion an diesem Punkt so verhält, als ob sie auf dem gesamten Intervall eine konstante Steigung hätte. Der Mittelwertsatz ist nützlich in verschiedenen Anwendungen, einschließlich der Analyse von Geschwindigkeiten, Optimierung und der Bestimmung von Werten innerhalb eines Intervalls.

Fama-French-Drei-Faktoren-Modell

Das Fama-French Three-Factor Model erweitert das traditionelle Capital Asset Pricing Model (CAPM), indem es zusätzlich zu den marktweiten Risiken zwei weitere Faktoren einführt, die die Renditen von Aktien beeinflussen. Diese Faktoren sind:

  1. Größenfaktor (SMB - Small Minus Big): Dieser Faktor misst die Renditedifferenz zwischen kleinen und großen Unternehmen. Historisch haben kleinere Unternehmen tendenziell höhere Renditen erzielt als größere Unternehmen.

  2. Wertfaktor (HML - High Minus Low): Dieser Faktor erfasst die Renditedifferenz zwischen Unternehmen mit hohen Buchwert-Marktwert-Verhältnissen (Wertaktien) und solchen mit niedrigen Buchwert-Marktwert-Verhältnissen (Wachstumsaktien). Auch hier zeigen historische Daten, dass Wertaktien oft bessere Renditen erzielen als Wachstumsaktien.

Die mathematische Darstellung des Modells lautet:

RiRf=α+β(RmRf)+sSMB+hHML+ϵR_i - R_f = \alpha + \beta (R_m - R_f) + s \cdot SMB + h \cdot HML + \epsilon

Hierbei steht RiR_i für die Rendite des Wertpapiers, RfR_f für den risikofreien Zinssatz, RmR_m für die Marktrendite, und α\alpha, β\beta, $

Smart Grid Technologie

Smart Grid Technology bezeichnet ein modernes elektrisches Versorgungsnetz, das digitale Kommunikationstechnologien nutzt, um die Effizienz, Zuverlässigkeit und Nachhaltigkeit der Energieversorgung zu verbessern. Im Gegensatz zu herkömmlichen Stromnetzen ermöglicht das Smart Grid den bidirektionalen Austausch von Energie und Informationen zwischen Energieversorgern und Verbrauchern. Dies geschieht durch den Einsatz von Smart Meters, die den Energieverbrauch in Echtzeit messen und den Nutzern helfen, ihren Verbrauch zu optimieren. Weitere Vorteile sind:

  • Erneuerbare Energien: Integration von Solar-, Wind- und anderen erneuerbaren Energiequellen.
  • Lastmanagement: Flexibles Management der Energieverteilung, um Spitzenlasten besser zu bewältigen.
  • Cyber-Sicherheit: Schutz der Infrastruktur gegen digitale Angriffe.

Durch die Implementierung von Smart Grid-Technologien wird eine intelligente und nachhaltige Energiezukunft gefördert, die sowohl ökologische als auch ökonomische Vorteile verspricht.

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.