Efficient Market Hypothesis Weak Form

Die Efficient Market Hypothesis (EMH) Weak Form postuliert, dass alle historischen Preisdaten in den aktuellen Marktpreisen enthalten sind. Das bedeutet, dass es unmöglich ist, durch die Analyse vergangener Preise, wie z.B. Trends oder Muster, systematisch überdurchschnittliche Renditen zu erzielen. Die Grundlage dieser Hypothese ist die Annahme, dass Marktteilnehmer rational handeln und alle verfügbaren Informationen sofort in die Preise einfließen.

Ein zentraler Aspekt der schwachen Form ist, dass technische Analyse, die sich auf historische Kursbewegungen stützt, keine überlegenen Ergebnisse liefert. Dies impliziert, dass Zufallsbewegungen der Preise den Markt dominieren und zukünftige Preisbewegungen nicht vorhersagbar sind. In mathematischen Begriffen kann man sagen, dass Preisänderungen ΔPt\Delta P_t unabhängig und identisch verteilt sind, was den Markt als effizient klassifiziert.

Weitere verwandte Begriffe

Quantum-Zeno-Effekt

Der Quantum Zeno Effect beschreibt ein faszinierendes Phänomen der Quantenmechanik, bei dem die Beobachtung eines quantenmechanischen Systems dessen Zeitentwicklung beeinflussen kann. Genauer gesagt, wenn ein System häufig gemessen oder beobachtet wird, wird die Wahrscheinlichkeit, dass es in einen anderen Zustand wechselt, stark verringert. Dies führt dazu, dass das System in seinem ursprünglichen Zustand "eingefroren" bleibt, obwohl es sich ohne Messungen normal weiterentwickeln würde.

Mathematisch lässt sich dieses Phänomen durch die Schrödinger-Gleichung und die Kopenhagener Deutung der Quantenmechanik erklären, wobei die Häufigkeit der Messungen den Übergang von einem Zustand zu einem anderen beeinflusst. Der Effekt ist besonders relevant in der Quanteninformationstheorie und hat Anwendungen in der Entwicklung quantenmechanischer Computer. Zusammengefasst zeigt der Quantum Zeno Effect, dass die Akt der Messung nicht nur Informationen liefert, sondern auch die Dynamik des Systems selbst beeinflusst.

Phasenregelschleife

Ein Phase-Locked Loop (PLL) ist ein Regelkreis, der verwendet wird, um die Frequenz und Phase eines Ausgangssignals mit einem Referenzsignal zu synchronisieren. Der PLL besteht typischerweise aus drei Hauptkomponenten: einem Phasendetektor, einem Tiefpassfilter und einem spannungsgesteuerten Oszillator (VCO). Der Phasendetektor vergleicht die Phase des Ausgangssignals mit der des Referenzsignals und erzeugt eine Steuerspannung, die die Phase und Frequenz des VCO anpasst. Dadurch kann der PLL auf Änderungen im Referenzsignal reagieren und sicherstellen, dass das Ausgangssignal stets synchron bleibt.

Ein PLL findet Anwendung in verschiedenen Bereichen, darunter Kommunikationstechnik, Signalverarbeitung und Uhren-Synchronisation. Mathematisch kann die Regelung des PLL durch die Gleichung

fout=K(fref+Δf)f_{out} = K \cdot (f_{ref} + \Delta f)

beschrieben werden, wobei foutf_{out} die Ausgangsfrequenz, KK die Verstärkung des Systems, freff_{ref} die Referenzfrequenz und Δf\Delta f die Frequenzabweichung darstellt.

Hume-Rothery-Regeln

Die Hume-Rothery-Regeln sind eine Reihe von Kriterien, die zur Vorhersage und Erklärung der Mischbarkeit von Metallen in Legierungen verwendet werden. Diese Regeln basieren auf den Eigenschaften der Atome und ihrer Struktur und umfassen mehrere Schlüsselfaktoren:

  1. Atomgröße: Die Atome der Legierungsbestandteile sollten eine ähnliche Größe aufweisen. Eine Differenz von weniger als 15% im Atomradius fördert die Mischbarkeit.
  2. Kristallstruktur: Die beiden Metalle sollten die gleiche oder eine kompatible Kristallstruktur besitzen, um eine homogene Mischung zu ermöglichen.
  3. Chemische Affinität: Die chemische Ähnlichkeit der Elemente, d. h. ihre Position im Periodensystem, ist entscheidend. Elemente, die nahe beieinander liegen, tendieren dazu, besser mischbar zu sein.
  4. Valenz: Eine ähnliche Anzahl von Valenzelektronen kann ebenfalls die Mischbarkeit beeinflussen; Elemente mit der gleichen Valenz tendieren dazu, sich besser zu mischen.

Diese Regeln sind besonders hilfreich in der Metallurgie und Materialwissenschaft, um die Herstellung von Legierungen mit gewünschten Eigenschaften zu optimieren.

Nash-Gleichgewicht

Das Nash Equilibrium ist ein zentrales Konzept in der Spieltheorie, das beschreibt, in welchem Zustand Spieler in einem Spiel strategische Entscheidungen treffen, sodass keiner der Spieler einen Anreiz hat, seine Strategie einseitig zu ändern. In einem Nash-Gleichgewicht wählt jeder Spieler die beste Strategie, gegeben die Strategien der anderen Spieler. Dies bedeutet, dass alle Spieler gleichzeitig optimal handeln, und zwar in dem Sinne, dass ihr Nutzen maximiert wird, solange die anderen Spieler ihre Entscheidungen beibehalten.

Mathematisch lässt sich das Nash-Gleichgewicht wie folgt formulieren: Sei SiS_i die Strategie des Spielers ii und Ui(S1,S2,,Sn)U_i(S_1, S_2, \ldots, S_n) die Nutzenfunktion. Ein Nash-Gleichgewicht liegt vor, wenn für jeden Spieler ii gilt:

Ui(S1,S2,,Sn)Ui(S1,S2,,Si1,Si,Si+1,,Sn)U_i(S_1, S_2, \ldots, S_n) \geq U_i(S_1, S_2, \ldots, S_{i-1}, S_i', S_{i+1}, \ldots, S_n)

für alle möglichen Strategien SiS_i' von Spieler ii. Ein bekanntes Beispiel für ein Nash-Gleichgewicht ist das Gefangenendilemma, wo zwei Gefangene, die unabhängig entscheiden, ob sie gestehen oder schweigen, im Gleich

Fama-French-Drei-Faktoren-Modell

Das Fama-French Three-Factor Model erweitert das traditionelle Capital Asset Pricing Model (CAPM), indem es zusätzlich zu den marktweiten Risiken zwei weitere Faktoren einführt, die die Renditen von Aktien beeinflussen. Diese Faktoren sind:

  1. Größenfaktor (SMB - Small Minus Big): Dieser Faktor misst die Renditedifferenz zwischen kleinen und großen Unternehmen. Historisch haben kleinere Unternehmen tendenziell höhere Renditen erzielt als größere Unternehmen.

  2. Wertfaktor (HML - High Minus Low): Dieser Faktor erfasst die Renditedifferenz zwischen Unternehmen mit hohen Buchwert-Marktwert-Verhältnissen (Wertaktien) und solchen mit niedrigen Buchwert-Marktwert-Verhältnissen (Wachstumsaktien). Auch hier zeigen historische Daten, dass Wertaktien oft bessere Renditen erzielen als Wachstumsaktien.

Die mathematische Darstellung des Modells lautet:

RiRf=α+β(RmRf)+sSMB+hHML+ϵR_i - R_f = \alpha + \beta (R_m - R_f) + s \cdot SMB + h \cdot HML + \epsilon

Hierbei steht RiR_i für die Rendite des Wertpapiers, RfR_f für den risikofreien Zinssatz, RmR_m für die Marktrendite, und α\alpha, β\beta, $

Einzelzell-RNA-Sequenzierungstechniken

Single-Cell RNA Sequencing (scRNA-seq) ist eine revolutionäre Technik, die es ermöglicht, die Genexpression auf der Ebene einzelner Zellen zu analysieren. Diese Methode bietet Einblicke in die molekularen Mechanismen von Zellpopulationen und deren heterogene Eigenschaften, die in herkömmlichen RNA-Sequenzierungstechniken verloren gehen. Der Prozess umfasst mehrere Schritte: Zunächst werden Zellen isoliert, oft durch Mikrofluidik oder Laser-Mikrodissektion. Anschließend wird die RNA in jeder Zelle amplifiziert und sequenziert, um die Transkriptome zu bestimmen. Die resultierenden Daten werden dann mit bioinformatischen Werkzeugen analysiert, um genetische Profile zu erstellen und Zelltypen zu identifizieren. Die Anwendung von scRNA-seq hat das Verständnis von Entwicklungsbiologie, Immunologie und Krebsforschung erheblich erweitert.

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.