StudierendeLehrende

Euler Tour Technique

Die Euler Tour Technique ist ein leistungsstarkes Konzept in der Graphentheorie, das verwendet wird, um verschiedene Probleme in Bäumen und Graphen effizient zu lösen. Es basiert auf der Idee, eine vollständige Durchlaufroute (Tour) durch einen Baum oder Graphen zu erstellen, wobei jeder Knoten und jede Kante genau einmal besucht wird. Diese Technik ermöglicht es, viele Abfragen und Operationen, wie das Finden von Vorfahren oder das Berechnen von Baum-Höhen, in konstanter Zeit durchzuführen, nachdem die Tour einmal erstellt wurde.

Die Grundidee ist, eine Traversierung des Baumes zu generieren, die nicht nur die Struktur des Baumes erfasst, sondern auch die Informationen über die Knoten und ihre Beziehungen bewahrt. Diese Traversierung kann in einer Liste oder einem Array gespeichert werden, wodurch man mit Hilfe von Segmentbäumen oder Sparse Tables effizient auf Informationen zugreifen kann. Der Algorithmus ist besonders nützlich in Anwendungen wie der LCA-Abfrage (Lowest Common Ancestor), wo die Bestimmung des niedrigsten gemeinsamen Vorfahren zweier Knoten in einem Baum erforderlich ist.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Balassa-Samuelson-Effekt

Der Balassa-Samuelson-Effekt beschreibt ein wirtschaftliches Phänomen, das die Unterschiede in den Preisniveaus zwischen Ländern erklärt, insbesondere zwischen entwickelten und sich entwickelnden Volkswirtschaften. Dieser Effekt beruht auf der Annahme, dass Länder, die in der Produktion von Gütern mit hoher Produktivität (wie Industrie- und Dienstleistungssektor) tätig sind, tendenziell auch höhere Löhne zahlen. Diese höheren Löhne führen zu höheren Preisen für nicht handelbare Güter (z.B. Dienstleistungen), was zu einem insgesamt höheren Preisniveau in diesen Ländern führt.

Die grundlegende Idee lässt sich in zwei Hauptpunkte unterteilen:

  1. Produktivitätsunterschiede: In Ländern mit höherer Produktivität steigen die Löhne, was sich auf die Preise auswirkt.
  2. Preisanpassungen: Die Preise für nicht handelbare Güter steigen schneller als die Preise für handelbare Güter, was zu einem Anstieg des allgemeinen Preisniveaus führt.

Insgesamt führt der Balassa-Samuelson-Effekt dazu, dass Länder mit höherer Produktivität tendenziell auch ein höheres Preisniveau aufweisen, was die Kaufkraft und den Wohlstand in einer globalisierten Welt beeinflusst.

Markov-Zufallsfelder

Markov Random Fields (MRFs) sind eine Klasse probabilistischer Modelle, die in der Statistik und maschinellem Lernen verwendet werden, um die Abhängigkeiten zwischen zufälligen Variablen zu modellieren. Sie basieren auf dem Konzept, dass die Bedingungsverteilung einer Variablen nur von ihren direkten Nachbarn abhängt, was oft als Markov-Eigenschaft bezeichnet wird. MRFs werden häufig in der Bildverarbeitung, der Sprachverarbeitung und in anderen Bereichen eingesetzt, um komplexe Datenstrukturen zu analysieren.

Ein MRF wird durch einen Graphen dargestellt, wobei Knoten die Zufallsvariablen und Kanten die Abhängigkeiten zwischen ihnen repräsentieren. Die Wahrscheinlichkeitsverteilung eines MRFs kann durch das Produkt von Potenzialfunktionen beschrieben werden, die die Wechselwirkungen zwischen den Variablen modellieren. Mathematisch wird dies oft in der Form
P(X)=1Z∏c∈Cϕc(Xc)P(X) = \frac{1}{Z} \prod_{c \in C} \phi_c(X_c)P(X)=Z1​∏c∈C​ϕc​(Xc​)
dargestellt, wobei ZZZ die Normierungs-Konstante ist und ϕc\phi_cϕc​ die Potenzialfunktion für eine Clique ccc im Graphen darstellt.

Aktuator-Sättigung

Actuator Saturation bezeichnet den Zustand, in dem ein Aktuator (z. B. Motor oder Hydraulikzylinder) seine maximalen oder minimalen Betriebsgrenzen erreicht und nicht mehr in der Lage ist, das gewünschte Signal oder die gewünschte Bewegung auszuführen. In diesem Zustand kann der Aktuator nicht mehr proportional auf Steuerbefehle reagieren, was zu einer Verzerrung der Systemleistung führt.

Diese Sättigung kann in verschiedenen Systemen auftreten, wie zum Beispiel in Regelkreisen, wo die Eingabe über die physikalischen Grenzen des Aktuators hinausgeht. Wenn der Aktuator gesättigt ist, kann dies zu Schwankungen oder Instabilität im System führen, da die Regelung nicht mehr effektiv arbeiten kann. In mathematischen Modellen wird dies häufig durch die Verwendung von Funktionen dargestellt, die die Begrenzungen des Aktuators berücksichtigen, wie zum Beispiel:

usat={uwenn ∣u∣<umaxumaxwenn u>umaxuminwenn u<uminu_{\text{sat}} = \begin{cases} u & \text{wenn } |u| < u_{\text{max}} \\ u_{\text{max}} & \text{wenn } u > u_{\text{max}} \\ u_{\text{min}} & \text{wenn } u < u_{\text{min}} \end{cases}usat​=⎩⎨⎧​uumax​umin​​wenn ∣u∣<umax​wenn u>umax​wenn u<umin​​

Hierbei ist uuu das Steuersignal, während $ u_{\text

Bilateral Monopoly Preisbildung

Das Konzept des Bilateral Monopoly Price Setting beschreibt eine Marktsituation, in der sowohl der Käufer als auch der Verkäufer monopolartige Macht haben. In dieser Struktur gibt es nur einen Anbieter und einen Nachfrager, was zu einer einzigartigen Verhandlungssituation führt. Beide Parteien können ihre Preise und Mengen durch Verhandlungen festlegen, was bedeutet, dass der Preis nicht durch den Marktmechanismus bestimmt wird, sondern durch die Interaktion zwischen Käufer und Verkäufer.

In einem bilateralen Monopol kann der Preis PPP als Ergebnis der Verhandlungen zwischen den beiden Parteien angesehen werden und wird oft durch die Gleichgewichtsmengen QdQ_dQd​ (Nachfragemenge) und QsQ_sQs​ (Angebotsmenge) beeinflusst. Die Maximierung des Gesamtgewinns durch beide Parteien erfordert eine sorgfältige Abstimmung, um den Wohlfahrtsgewinn zu maximieren. Dies kann mathematisch als

Gesamtgewinn=Erlo¨s−Kosten\text{Gesamtgewinn} = \text{Erlös} - \text{Kosten}Gesamtgewinn=Erlo¨s−Kosten

ausgedrückt werden, wobei sowohl Erlös als auch Kosten von der jeweiligen Preisgestaltung abhängen.

Pareto-Optimalität

Pareto Optimalität ist ein Konzept aus der Wohlfahrtsökonomik, das beschreibt, in welchem Zustand eine Ressourcenzuteilung als optimal betrachtet wird. Ein Zustand ist Pareto optimal, wenn es nicht möglich ist, das Wohlergehen eines Individuums zu verbessern, ohne das Wohlergehen eines anderen Individuums zu verschlechtern. Dies bedeutet, dass alle verfügbaren Ressourcen so verteilt sind, dass jeder Teilnehmer im System das bestmögliche Ergebnis erhält, ohne dass jemand benachteiligt wird.

Mathematisch ausgedrückt, ist ein Zustand xxx Pareto optimal, wenn es für keinen anderen Zustand yyy gilt, dass yyy mindestens so gut wie xxx ist, und für mindestens ein Individuum gilt, dass es in yyy besser gestellt ist. Eine Verteilung ist also Pareto effizient, wenn:

¬∃y:(y≥x∧∃i:yi>xi)\neg \exists y: (y \geq x \land \exists i: y_i > x_i)¬∃y:(y≥x∧∃i:yi​>xi​)

In der Praxis wird das Konzept oft verwendet, um die Effizienz von Märkten oder politischen Entscheidungen zu bewerten. Es ist wichtig zu beachten, dass Pareto Optimalität nicht notwendigerweise Gerechtigkeit oder Gleichheit impliziert; es ist lediglich ein Maß für die Effizienz der Ressourcennutzung.

Phillips-Kurve Erwartungen Anpassung

Die Phillips-Kurve beschreibt die inverse Beziehung zwischen Inflation und Arbeitslosigkeit in einer Volkswirtschaft. Der Adjustierungseffekt der Erwartungen bezieht sich auf die Anpassung der Inflationserwartungen der Wirtschaftsteilnehmer im Laufe der Zeit. Wenn die Inflation höher als erwartet ist, werden Arbeitnehmer und Unternehmen ihre zukünftigen Erwartungen an die Preisentwicklung anpassen, was zu einer Erhöhung der Löhne und damit zu einer weiteren Inflation führen kann. Dies kann in einem sich selbst verstärkenden Zyklus resultieren, in dem steigende Inflationserwartungen die tatsächliche Inflation weiter anheizen. Der mathematische Ausdruck für die Phillips-Kurve könnte vereinfacht als folgt dargestellt werden:

πt=πt−1−β(ut−un)\pi_t = \pi_{t-1} - \beta (u_t - u_n)πt​=πt−1​−β(ut​−un​)

Hierbei ist πt\pi_tπt​ die Inflation zum Zeitpunkt ttt, β\betaβ der Reaktionsfaktor, utu_tut​ die tatsächliche Arbeitslosenquote und unu_nun​ die natürliche Arbeitslosenquote. Die Anpassung der Erwartungen spielt eine entscheidende Rolle, da sie die langfristigen Beziehungen zwischen Inflation und Arbeitslosigkeit beeinflusst und die Effektivität der Geldpolitik in Frage stellt.