StudierendeLehrende

Finite Element Meshing Techniques

Die Finite-Elemente-Methode (FEM) ist eine leistungsstarke numerische Technik zur Analyse komplexer physikalischer Systeme. Bei dieser Methode ist das Erstellen eines geeigneten Netzes (Meshing) entscheidend, da die Qualität des Netzes direkten Einfluss auf die Genauigkeit und Effizienz der Berechnungen hat. Es gibt verschiedene Techniken für das Meshing, darunter:

  • Regelmäßige Netze: Diese verwenden gleichmäßige Elemente, die einfach zu handhaben sind, aber möglicherweise nicht die Geometrie komplexer Modelle genau erfassen.
  • Adaptive Meshing: Diese Technik passt die Dichte des Netzes basierend auf den Ergebnissen der Simulation an, um in Bereichen mit hohen Gradienten, wie Spannungsspitzen, mehr Details zu erfassen.
  • Unstrukturierte Netze: Diese bestehen aus variabel geformten Elementen und sind flexibler in der Modellierung komplizierter Geometrien, bieten jedoch Herausforderungen in Bezug auf die Berechnungseffizienz.

Ein effektives Meshing ist also entscheidend, um eine hohe Genauigkeit in den Simulationsergebnissen zu gewährleisten und gleichzeitig die Rechenressourcen optimal zu nutzen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Maxwellsche Gleichungen

Maxwell's Gleichungen sind vier fundamentale Gleichungen der Elektrodynamik, die das Verhalten von elektrischen und magnetischen Feldern beschreiben. Diese Gleichungen, formuliert von James Clerk Maxwell im 19. Jahrhundert, verknüpfen elektrische Felder E\mathbf{E}E, magnetische Felder B\mathbf{B}B, elektrische Ladungen ρ\rhoρ und Ströme J\mathbf{J}J. Sie lauten:

  1. Gaußsches Gesetz: ∇⋅E=ρε0\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}∇⋅E=ε0​ρ​ - Dies beschreibt, wie elektrische Felder von elektrischen Ladungen erzeugt werden.
  2. Gaußsches Gesetz für Magnetismus: ∇⋅B=0\nabla \cdot \mathbf{B} = 0∇⋅B=0 - Dies besagt, dass es keine magnetischen Monopole gibt und dass magnetische Feldlinien immer geschlossen sind.
  3. Faradaysches Gesetz der Induktion: ∇×E=−∂B∂t\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}∇×E=−∂t∂B​ - Es erklärt, wie sich ein sich änderndes magnetisches Feld in ein elektrisches Feld umwandelt.
  4. Maxwellsches Gesetz der Induktion: $\nabla \times \mathbf{B

Spieltheorie-Gleichgewicht

In der Spieltheorie bezeichnet das Konzept des Gleichgewichts einen Zustand, in dem die Strategien aller Spieler optimal aufeinander abgestimmt sind, sodass keiner der Spieler einen Anreiz hat, seine Strategie einseitig zu ändern. Das bekannteste Gleichgewicht ist das Nash-Gleichgewicht, benannt nach John Nash, das auftritt, wenn jeder Spieler die beste Antwort auf die Strategien der anderen wählt. In einem solchen Gleichgewicht sind die Entscheidungen der Spieler stabil, und es gibt keine Möglichkeit, durch eine Änderung der Strategie einen höheren Nutzen zu erzielen. Mathematisch wird ein Nash-Gleichgewicht oft als ein Paar von Strategien (s1∗,s2∗)(s_1^*, s_2^*)(s1∗​,s2∗​) dargestellt, bei dem für jeden Spieler iii gilt:

ui(s1∗,s2∗)≥ui(s1,s2∗)u_i(s_1^*, s_2^*) \geq u_i(s_1, s_2^*)ui​(s1∗​,s2∗​)≥ui​(s1​,s2∗​)

für alle möglichen Strategien s1s_1s1​ und s2s_2s2​ der anderen Spieler. Spieltheoretisches Gleichgewicht ist von zentraler Bedeutung in der Wirtschaft, da es hilft, das Verhalten von Individuen und Firmen in strategischen Interaktionen zu verstehen und vorherzusagen.

Laffer-Kurve Fiskalpolitik

Die Laffer-Kurve ist ein wirtschaftliches Konzept, das den Zusammenhang zwischen Steuersätzen und den staatlichen Einnahmen beschreibt. Sie zeigt, dass es einen optimalen Steuersatz gibt, bei dem die Einnahmen maximiert werden; sowohl zu niedrige als auch zu hohe Steuersätze können zu geringeren Einnahmen führen. Dies geschieht, weil sehr niedrige Steuersätze möglicherweise nicht genug Einnahmen generieren, während sehr hohe Steuersätze Investitionen und Arbeitsanreize verringern können, was zu einer Verringerung der wirtschaftlichen Aktivität führt.

Die Kurve kann mathematisch dargestellt werden, wobei die Steuerquote auf der x-Achse und die Steuererträge auf der y-Achse abgetragen werden. Der Verlauf der Kurve zeigt, dass es einen Punkt gibt, an dem eine Erhöhung des Steuersatzes nicht nur die Einnahmen nicht steigert, sondern sie tatsächlich verringert. Die Laffer-Kurve wird oft genutzt, um politische Entscheidungen zu unterstützen, indem sie argumentiert, dass Steuersenkungen unter bestimmten Bedingungen langfristig zu höheren Einnahmen führen können.

Legendre-Transformation Anwendungen

Die Legendre-Transformation ist ein mächtiges mathematisches Werkzeug, das in verschiedenen Bereichen der Wissenschaft und Wirtschaft Anwendung findet. Sie ermöglicht es, zwischen verschiedenen Darstellungen einer Funktion zu wechseln, insbesondere zwischen den Variablen einer Funktion und ihren Ableitungen. Ein häufiges Beispiel ist die Anwendung in der Thermodynamik, wo die Legendre-Transformation verwendet wird, um von der inneren Energie U(S,V)U(S,V)U(S,V) zur Enthalpie H(S,P)H(S,P)H(S,P) zu gelangen, wobei SSS die Entropie, VVV das Volumen und PPP der Druck ist.

In der Optimierung wird die Legendre-Transformation genutzt, um duale Probleme zu formulieren, wodurch die Suche nach Minimum oder Maximum von Funktionen erleichtert wird. Außerdem findet sie in der Theoretischen Physik Anwendung, insbesondere in der Hamiltonschen Mechanik, wo sie hilft, die Bewegungsgleichungen aus den Energieformen abzuleiten. Zusammenfassend lässt sich sagen, dass die Legendre-Transformation nicht nur mathematische Eleganz bietet, sondern auch praktische Lösungen in vielen Disziplinen ermöglicht.

Runge-Kutta

Das Runge-Kutta-Verfahren ist eine weit verbreitete Methode zur numerischen Lösung gewöhnlicher Differentialgleichungen. Es handelt sich um ein iteratives Verfahren, das die Lösung schrittweise approximiert, indem es mehrere Zwischenschritte innerhalb jedes Zeitintervalls berechnet. Die bekannteste Form ist das klassische 4. Ordnung Runge-Kutta-Verfahren, das vier Steigungen (K-Werte) pro Schritt verwendet, um eine genauere Schätzung des nächsten Punktes zu erhalten.

Die allgemeinen Schritte für das 4. Ordnung Runge-Kutta-Verfahren lauten:

  1. Berechne die ersten K-Werte:

    • k1=h⋅f(tn,yn)k_1 = h \cdot f(t_n, y_n)k1​=h⋅f(tn​,yn​)
    • k2=h⋅f(tn+h2,yn+k12)k_2 = h \cdot f(t_n + \frac{h}{2}, y_n + \frac{k_1}{2})k2​=h⋅f(tn​+2h​,yn​+2k1​​)
    • k3=h⋅f(tn+h2,yn+k22)k_3 = h \cdot f(t_n + \frac{h}{2}, y_n + \frac{k_2}{2})k3​=h⋅f(tn​+2h​,yn​+2k2​​)
    • k4=h⋅f(tn+h,yn+k3)k_4 = h \cdot f(t_n + h, y_n + k_3)k4​=h⋅f(tn​+h,yn​+k3​)
  2. Berechne den nächsten Wert:

Ito-Kalkül

Der Ito-Kalkül ist ein fundamentales Konzept in der stochastischen Analysis, das vor allem in der Finanzmathematik Anwendung findet. Er wurde von dem japanischen Mathematiker Kiyoshi Ito entwickelt und ermöglicht die Integration und Differentiation von stochastischen Prozessen, insbesondere von Wiener-Prozessen oder Brownian Motion. Im Gegensatz zur klassischen Analysis, die auf deterministischen Funktionen basiert, behandelt der Ito-Kalkül Funktionen, die von zufälligen Bewegungen abhängen, was zu einzigartigen Eigenschaften führt, wie der berühmten Ito-Formel. Diese Formel besagt, dass für eine Funktion f(t,Xt)f(t, X_t)f(t,Xt​), wobei XtX_tXt​ ein stochastischer Prozess ist, gilt:

df(t,Xt)=(∂f∂t+12∂2f∂x2σ2(t,Xt))dt+∂f∂xσ(t,Xt)dWtdf(t, X_t) = \left( \frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \sigma^2(t, X_t) \right) dt + \frac{\partial f}{\partial x} \sigma(t, X_t) dW_tdf(t,Xt​)=(∂t∂f​+21​∂x2∂2f​σ2(t,Xt​))dt+∂x∂f​σ(t,Xt​)dWt​

Hierbei ist dWtdW_tdWt​ der Wiener-Prozess. Der Ito-Kalkül ist besonders nützlich, um Modelle für Finanzderivate zu entwickeln und um die Dynamik von Aktienpreisen zu beschreiben.