Mach-Zehnder Interferometer

Das Mach-Zehnder Interferometer ist ein optisches Instrument, das zur Messung von Phasenverschiebungen und Interferenzmustern verwendet wird. Es besteht aus zwei Strahlteilern, die das einfallende Licht in zwei separate Strahlen aufteilen. Diese Strahlen durchlaufen unterschiedliche optische Pfade und werden anschließend wieder zusammengeführt. Durch die Überlagerung der beiden Strahlen entsteht ein Interferenzmuster, das von der relativen Phase der Strahlen abhängt.

Die Phasenverschiebung Δϕ\Delta \phi zwischen den beiden Strahlen kann durch verschiedene Faktoren beeinflusst werden, wie z.B. Änderungen in der Umgebungstemperatur oder der Lichtquelle. Das Interferometer wird häufig in der Quantenoptik, der Messphysik und der Telekommunikation eingesetzt, um präzise Messungen durchzuführen und Informationen über die Eigenschaften des Lichtes zu gewinnen.

Weitere verwandte Begriffe

EEG-Mikrostate-Analyse

Die EEG-Mikrostate-Analyse ist eine Methode zur Untersuchung der zeitlichen Struktur von EEG-Signalen, die es ermöglicht, die kortikale Aktivität in kurze, stabile Muster zu zerlegen. Diese Mikrostate repräsentieren transient auftretende Zustände der Gehirnaktivität, die typischerweise zwischen 50 und 100 Millisekunden dauern. Die Analyse erfolgt in der Regel durch die Identifizierung und Klassifizierung dieser Mikrostate, wobei häufig die K-Means-Clustering-Methode angewendet wird, um ähnliche Muster zu gruppieren.

Ein wichtiges Ziel der Mikrostate-Analyse ist es, die Beziehung zwischen diesen Mustern und kognitiven oder emotionalen Prozessen zu verstehen. Darüber hinaus kann die Untersuchung von Mikrostate-Änderungen in verschiedenen Zuständen (z. B. Ruhe, Aufmerksamkeit oder Krankheit) wertvolle Einblicke in die Funktionsweise des Gehirns geben. Die Resultate dieser Analysen können in der klinischen Psychologie, Neurologie und anderen Bereichen der Gehirnforschung von Bedeutung sein.

Ladungsfallen in Halbleitern

Charge Trapping in Halbleitern bezieht sich auf den Prozess, bei dem elektrische Ladungen in bestimmten Bereichen eines Halbleitermaterials gefangen gehalten werden. Dies geschieht häufig in Defekten oder Verunreinigungen innerhalb des Halbleiters, die als Fallen fungieren. Wenn ein Elektron in eine solche Falle gelangt, kann es dort für eine gewisse Zeit verbleiben, was die elektrischen Eigenschaften des Materials beeinflusst. Diese gefangenen Ladungen können die Leitfähigkeit verändern und zu einer Erhöhung der Schaltverluste in elektronischen Bauelementen führen. Ein wichtiges Konzept in diesem Zusammenhang ist die Energiebarriere, die die Bewegung der Ladungen zwischen dem Valenzband und der Falle beschreibt. Mathematisch kann dies durch die Gleichung für den thermischen Tunneleffekt beschrieben werden, die die Wahrscheinlichkeit angibt, dass ein Elektron die Barriere überwindet.

Gini-Koeffizient

Der Gini-Koeffizient ist ein Maß für die Einkommens- oder Vermögensverteilung innerhalb einer Bevölkerung und wird häufig verwendet, um die Ungleichheit in einer Gesellschaft zu quantifizieren. Er variiert zwischen 0 und 1, wobei 0 vollständige Gleichheit darstellt (alle haben das gleiche Einkommen) und 1 vollständige Ungleichheit (eine Person hat das gesamte Einkommen, während alle anderen nichts haben). Mathematisch wird der Gini-Koeffizient aus der Lorenz-Kurve abgeleitet, die die kumulierte Einkommensverteilung darstellt. Der Gini-Koeffizient kann auch als Verhältnis der Fläche zwischen der Lorenz-Kurve und der Gleichheitslinie zur gesamten Fläche unter der Gleichheitslinie dargestellt werden:

G=AA+BG = \frac{A}{A + B}

Hierbei ist AA die Fläche zwischen der Gleichheitslinie und der Lorenz-Kurve, während BB die Fläche unter der Lorenz-Kurve darstellt. Ein niedriger Gini-Koeffizient deutet auf eine gerechtere Einkommensverteilung hin, während ein hoher Koeffizient auf eine größere Ungleichheit hinweist.

Rückwärtsinduktion

Backward Induction ist eine Methode zur Lösung von Entscheidungsproblemen in der Spieltheorie, insbesondere in dynamischen Spielen mit vollständiger Information. Der Ansatz besteht darin, die Entscheidungen der Spieler von der letzten Runde des Spiels bis zur ersten rückwärts zu analysieren. Dabei wird angenommen, dass die Spieler in jeder Runde rational handeln und ihre Entscheidungen auf der Grundlage der erwarteten Entscheidungen der anderen Spieler treffen.

Um dies zu verdeutlichen, betrachten wir ein einfaches Beispiel mit zwei Spielern, die abwechselnd Entscheidungen treffen. Der Spieler, der zuletzt an der Reihe ist, wählt zuerst die optimale Strategie, und diese Entscheidung beeinflusst die Strategie des vorhergehenden Spielers. Durch das systematische Durcharbeiten der möglichen Ergebnisse und Strategien von hinten nach vorne können die optimalen Strategien für alle Spieler identifiziert werden.

In mathematischen Formulierungen wird oft die Gleichung V(s)=maxaA(s)R(s,a)+V(s)V(s) = \max_{a \in A(s)} R(s, a) + V(s') verwendet, wobei V(s)V(s) den Wert des Spiels in Zustand ss darstellt, A(s)A(s) die möglichen Aktionen in diesem Zustand und R(s,a)R(s, a) die Belohnung für die gewählte Aktion aa darstellt.

Phasenwechsel-Speicher

Phase-Change Memory (PCM) ist eine nichtflüchtige Speichertechnologie, die auf den Phasenübergängen von Materialien basiert, um Daten zu speichern. Diese Technologie nutzt spezielle Legierungen, die zwischen amorphen und kristallinen Zuständen wechseln können. Im amorphen Zustand sind die Atome ungeordnet und speichern "0", während im kristallinen Zustand die Atome geordnet sind und "1" speichern. Der Übergang zwischen diesen Zuständen wird durch gezielte Wärmebehandlung erreicht, die durch elektrische Impulse erzeugt wird. PCM bietet im Vergleich zu herkömmlichem Flash-Speicher eine höhere Schreibgeschwindigkeit, bessere Haltbarkeit und eine größere Anzahl von Schreibzyklen, was es zu einem vielversprechenden Kandidaten für zukünftige Speicherlösungen macht.

Verlustaversion

Loss Aversion bezeichnet ein psychologisches Phänomen, bei dem Menschen Verluste stärker empfinden als Gewinne gleicher Höhe. Studien haben gezeigt, dass der Schmerz über einen Verlust oft doppelt so stark ist wie die Freude über einen gleichwertigen Gewinn. Diese Tendenz beeinflusst Entscheidungsprozesse in vielen Bereichen, von Finanzinvestitionen bis hin zu alltäglichen Kaufentscheidungen. Menschen neigen dazu, riskantere Entscheidungen zu vermeiden, um Verluste zu verhindern, selbst wenn dies bedeutet, potenzielle Gewinne aufzugeben. Dies führt häufig zu einer Ineffizienz in Märkten und kann dazu führen, dass Investoren an verlustbringenden Anlagen festhalten, anstatt ihre Strategien zu optimieren.

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.