StudierendeLehrende

Hawking Evaporation

Die Hawking-Evaporations-Theorie, die von dem Physiker Stephen Hawking in den 1970er Jahren formuliert wurde, beschreibt einen Prozess, durch den schwarze Löcher Energie und Masse verlieren können. Dieser Prozess entsteht durch Quantenfluktuationen in der Nähe des Ereignishorizonts eines schwarzen Lochs. Dabei entstehen Paare von Teilchen und Antiteilchen, die kurzzeitig aus dem Nichts erscheinen können. Wenn eines dieser Teilchen ins schwarze Loch fällt, kann das andere entkommen, was dazu führt, dass das schwarze Loch Energie verliert.

Dies wird oft als eine Art „Verdampfung“ beschrieben, da die Masse des schwarzen Lochs im Laufe der Zeit abnimmt. Der Verlust an Masse führt zur Langsamkeit der Verdampfung, wobei kleine schwarze Löcher schneller evaporieren als große. Letztlich könnte ein schwarzes Loch durch diesen Prozess vollständig verschwinden, was gravierende Implikationen für unser Verständnis der Thermodynamik und der Informationsnatur im Universum hat.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Effiziente Markthypothese - schwache Form

Die Efficient Market Hypothesis (EMH) Weak Form postuliert, dass alle historischen Preisdaten in den aktuellen Marktpreisen enthalten sind. Das bedeutet, dass es unmöglich ist, durch die Analyse vergangener Preise, wie z.B. Trends oder Muster, systematisch überdurchschnittliche Renditen zu erzielen. Die Grundlage dieser Hypothese ist die Annahme, dass Marktteilnehmer rational handeln und alle verfügbaren Informationen sofort in die Preise einfließen.

Ein zentraler Aspekt der schwachen Form ist, dass technische Analyse, die sich auf historische Kursbewegungen stützt, keine überlegenen Ergebnisse liefert. Dies impliziert, dass Zufallsbewegungen der Preise den Markt dominieren und zukünftige Preisbewegungen nicht vorhersagbar sind. In mathematischen Begriffen kann man sagen, dass Preisänderungen ΔPt\Delta P_tΔPt​ unabhängig und identisch verteilt sind, was den Markt als effizient klassifiziert.

Perfekte Hashfunktion

Perfect Hashing ist eine Technik zur Erstellung von Hash-Tabellen, die garantiert, dass es keine Kollisionen gibt, wenn man eine endliche Menge von Schlüsseln in die Tabelle einfügt. Im Gegensatz zu normalen Hashing-Methoden, bei denen Kollisionen durch verschiedene Strategien wie Verkettung oder offene Adressierung behandelt werden, erzeugt Perfect Hashing eine Funktion, die jeden Schlüssel eindeutig auf einen Index in der Tabelle abbildet. Diese Methode besteht in der Regel aus zwei Phasen: Zunächst wird eine primäre Hash-Funktion entwickelt, um die Schlüssel in Buckets zu gruppieren, und dann wird für jeden Bucket eine sekundäre Hash-Funktion erstellt, die die Schlüssel innerhalb des Buckets perfekt abbildet.

Die Herausforderung bei Perfect Hashing liegt in der Notwendigkeit, eine geeignete Hash-Funktion zu finden, die die Kollisionen vermeidet und gleichzeitig die Effizienz des Zugriffs auf die Daten gewährleistet. Mathematisch kann man Perfect Hashing als eine Abbildung h:S→[0,m−1]h: S \to [0, m-1]h:S→[0,m−1] betrachten, wobei SSS die Menge der Schlüssel und mmm die Größe der Hash-Tabelle ist. Perfect Hashing ist besonders nützlich in Anwendungen, wo die Menge der Schlüssel fest und bekannt ist, wie in kompakten Datenstrukturen oder bei der Implementierung von Symboltabellen.

Maschinelles Lernen Regression

Machine Learning Regression ist ein Teilbereich des maschinellen Lernens, der sich mit der Vorhersage kontinuierlicher Werte beschäftigt. Dabei wird ein Modell trainiert, um die Beziehung zwischen einer oder mehreren unabhängigen Variablen (Features) und einer abhängigen Variable (Zielgröße) zu erfassen. Die häufigsten Algorithmen für die Regression sind lineare Regression, polynomiale Regression und Entscheidungsbaum-Regression.

Das Ziel ist es, eine Funktion f(x)f(x)f(x) zu finden, die die Eingabedaten xxx so abbildet, dass die Vorhersage yyy so genau wie möglich ist. Dies geschieht in der Regel durch Minimierung eines Fehlers, häufig gemessen durch die mittlere quadratische Abweichung (MSE):

MSE=1n∑i=1n(yi−f(xi))2\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2MSE=n1​i=1∑n​(yi​−f(xi​))2

Hierbei ist nnn die Anzahl der Datenpunkte, yiy_iyi​ der tatsächliche Wert und f(xi)f(x_i)f(xi​) der vorhergesagte Wert. Durch optimierte Algorithmen wie Gradient Descent wird das Modell kontinuierlich verbessert, um genauere Vorhersagen zu ermöglichen.

Fermatscher Satz

Das Fermatsche Theorem bezieht sich auf die berühmte Aussage von Pierre de Fermat, die besagt, dass es keine drei positiven ganzen Zahlen aaa, bbb und ccc gibt, die die Gleichung an+bn=cna^n + b^n = c^nan+bn=cn für n>2n > 2n>2 erfüllen. Diese Behauptung wurde erstmals 1637 formuliert und ist bekannt für den zugehörigen Satz, dass Fermat in den Rand eines Buches schrieb, dass er einen "wunderbaren Beweis" dafür gefunden habe, aber der Rand nicht ausreiche, um ihn niederzuschreiben. Der Satz blieb über 350 Jahre lang unbewiesen, bis Andrew Wiles 1994 einen vollständigen Beweis lieferte. Dieser Beweis nutzt moderne mathematische Techniken, insbesondere die Theorie der elliptischen Kurven und modulare Formen. Das Fermatsche Theorem ist ein Meilenstein in der Zahlentheorie und hat bedeutende Auswirkungen auf die Mathematik und deren Teilgebiete.

Hamming-Distanz in der Fehlerkorrektur

Die Hamming-Distanz ist ein zentrales Konzept in der Fehlerkorrektur, das die Anzahl der Positionen misst, an denen sich zwei gleich lange Bitfolgen unterscheiden. Sie wird verwendet, um die Fähigkeit eines Codes zu bestimmen, Fehler zu erkennen und zu korrigieren. Zum Beispiel, wenn der Codewort A=1011101A = 1011101A=1011101 und das empfangene Wort B=1001001B = 1001001B=1001001 ist, dann beträgt die Hamming-Distanz d(A,B)=3d(A, B) = 3d(A,B)=3, da sich die beiden Codewörter in drei Positionen unterscheiden.

Die Hamming-Distanz ist entscheidend für die Fehlerkorrekturfähigkeit eines Codes: Ein Code kann bis zu ⌊d−12⌋\left\lfloor \frac{d - 1}{2} \right\rfloor⌊2d−1​⌋ Fehler erkennen und ⌊d2⌋\left\lfloor \frac{d}{2} \right\rfloor⌊2d​⌋ Fehler korrigieren, wobei ddd die Hamming-Distanz ist. Durch die Wahl geeigneter Codes mit ausreichender Hamming-Distanz können Systeme robust gegenüber Übertragungsfehlern gestaltet werden, was in modernen Kommunikations- und Datenspeichertechnologien von großer Bedeutung ist.

Verhaltensverzerrung

Behavioral Bias bezeichnet systematische Abweichungen von rationalem Denken und Entscheiden, die durch psychologische Faktoren beeinflusst werden. Diese Verzerrungen können das Verhalten von Individuen und Gruppen in wirtschaftlichen und finanziellen Kontexten erheblich beeinflussen. Zu den häufigsten Typen von Behavioral Bias gehören:

  • Überoptimismus: Die Tendenz, die eigenen Fähigkeiten oder die zukünftige Entwicklung von Investitionen zu überschätzen.
  • Bestätigungsfehler: Die Neigung, Informationen zu suchen oder zu interpretieren, die die eigenen Überzeugungen stützen, während gegenteilige Informationen ignoriert werden.
  • Verlustaversion: Die Vorstellung, dass der Schmerz eines Verlustes größer ist als die Freude über einen gleichwertigen Gewinn, was zu riskanten Entscheidungen führen kann.

Diese Biases können zu suboptimalen Entscheidungen führen, die nicht nur individuelle Investoren, sondern auch ganze Märkte betreffen. Ein besseres Verständnis von Behavioral Bias kann helfen, bewusstere Entscheidungen zu treffen und Risiken zu minimieren.