Die Hodge-Zerlegung ist ein fundamentales Konzept in der Differentialgeometrie und der algebraischen Topologie, das sich mit der Struktur von Differentialformen auf kompakten, orientierbaren Mannigfaltigkeiten beschäftigt. Sie besagt, dass jede Differentialform in einer kompakten Riemannschen Mannigfaltigkeit in drei orthogonale Komponenten zerlegt werden kann:
Mathematisch ausgedrückt, lässt sich eine -Form als schreiben, wobei den Exterior-Differentialoperator darstellt, den adjungierten Operator und entsprechende Differentialformen sind. Diese Zerlegung hat weitreichende Anwendungen in der theoretischen Physik, insbesondere in der Elektrodynamik und der Stringtheorie, da sie hilft, komplexe Probleme in überschaubare Teile zu zerlegen.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.