StudierendeLehrende

Jevons Paradox In Economics

Das Jevons Paradox beschreibt ein Phänomen in der Wirtschaft, das auf den britischen Ökonomen William Stanley Jevons zurückgeht. Er stellte fest, dass Verbesserungen der Energieeffizienz oft nicht zu einer Verringerung des Gesamtverbrauchs führen, sondern paradox dazu führen können, dass der Verbrauch sogar steigt. Dies geschieht, weil effizientere Technologien die Kosten senken und somit den Konsum anregen. Beispielsweise kann eine effizientere Dampfkraftmaschine zu einer Senkung der Betriebskosten führen, was wiederum die Nachfrage nach Dampfkraft und damit den Gesamtverbrauch an Energie erhöht.

Das Paradox verdeutlicht, dass Effizienzgewinne allein nicht ausreichen, um den Ressourcenverbrauch zu reduzieren, und es erfordert oft begleitende Maßnahmen wie Preisanpassungen, Regulierungen oder Bewusstseinsbildung, um eine nachhaltige Nutzung von Ressourcen zu fördern.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Riemannsche Zeta-Funktion

Die Riemannsche Zeta-Funktion ist eine komplexe Funktion, die in der Zahlentheorie eine zentrale Rolle spielt, insbesondere bei der Untersuchung der Verteilung der Primzahlen. Sie wird üblicherweise durch die Formel definiert:

ζ(s)=∑n=1∞1ns\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}ζ(s)=n=1∑∞​ns1​

für komplexe Zahlen sss mit einem Realteil größer als 1. Diese Funktion kann durch analytische Fortsetzung auf andere Werte von sss erweitert, mit Ausnahme von s=1s = 1s=1, wo sie einen einfachen Pol hat. Ein bemerkenswertes Ergebnis ist die Riemann-Hypothese, die besagt, dass alle nicht-trivialen Nullstellen der Zeta-Funktion eine Realteil von 12\frac{1}{2}21​ haben. Die Zeta-Funktion verbindet viele Bereiche der Mathematik, einschließlich der Kombinatorik und der mathematischen Physik, und hat bedeutende Anwendungen in der modernen Zahlentheorie.

Metabolische Flussbilanz

Metabolic Flux Balance (MFB) ist eine mathematische Methode zur Analyse von Stoffwechselnetzwerken in biologischen Systemen. Sie basiert auf der Annahme, dass der metabolische Fluss, also der Transport von Metaboliten durch verschiedene biochemische Reaktionen, in einem stationären Zustand ist. In diesem Zustand sind die Eingänge und Ausgänge von Metaboliten gleich, was bedeutet, dass die Gesamtbilanz der Reaktionen gleich Null ist. Mathematisch wird dies oft durch Gleichungen dargestellt, die die Flüsse viv_ivi​ der einzelnen Reaktionen beschreiben, sodass gilt:

∑ivi=0\sum_{i} v_i = 0i∑​vi​=0

Diese Methode ist besonders nützlich in der Systembiologie und Biotechnologie, um Vorhersagen über Zellverhalten zu treffen und Optimierungen für die Produktion von Metaboliten zu ermöglichen. MFB wird häufig in Kombination mit experimentellen Daten eingesetzt, um Modelle zu validieren und die Effizienz von Stoffwechselwegen zu verbessern.

Shapley-Wert

Der Shapley Value ist ein Konzept aus der kooperativen Spieltheorie, das zur Verteilung von Gewinnen oder Verlusten unter den Mitgliedern einer Koalition verwendet wird. Er wurde von Lloyd Shapley entwickelt und basiert auf der Idee, dass jeder Spieler einen bestimmten Beitrag zum Gesamtergebnis leistet. Der Shapley Value berücksichtigt nicht nur den individuellen Beitrag eines Spielers, sondern auch, wie dieser Beitrag in verschiedenen Koalitionen zum Tragen kommt.

Mathematisch wird der Shapley Value für einen Spieler iii in einer Koalition durch die Formel

ϕi(v)=∑S⊆N∖{i}∣S∣!⋅(∣N∣−∣S∣−1)!∣N∣!⋅(v(S∪{i})−v(S))\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! \cdot (|N| - |S| - 1)!}{|N|!} \cdot (v(S \cup \{i\}) - v(S))ϕi​(v)=S⊆N∖{i}∑​∣N∣!∣S∣!⋅(∣N∣−∣S∣−1)!​⋅(v(S∪{i})−v(S))

definiert, wobei NNN die Menge aller Spieler ist und v(S)v(S)v(S) den Wert der Koalition SSS darstellt. Der Shapley Value hat zahlreiche Anwendungen in verschiedenen Bereichen, wie z.B. der Wirtschaft, der Politik und der Verteilung von Ressourcen, da er faire und rationale Entscheidungsfindungen fördert.

Proteinfaltungstabilität

Die Stabilität der Protein-Faltung bezieht sich auf die Fähigkeit eines Proteins, seine spezifische dreidimensionale Struktur aufrechtzuerhalten, die für seine Funktion entscheidend ist. Dieser Prozess wird stark von der chemischen Umgebung, den intermolekularen Wechselwirkungen und der Aminosäuresequenz des Proteins beeinflusst. Die Stabilität kann durch verschiedene Faktoren beeinflusst werden, darunter Temperatur, pH-Wert und die Anwesenheit von anderen Molekülen.

Die energetische Stabilität eines gefalteten Proteins kann oft durch die Gibbs freie Energie (ΔG\Delta GΔG) beschrieben werden, wobei ein negatives ΔG\Delta GΔG auf eine thermodynamisch günstige Faltung hinweist. Die Faltung wird durch eine Vielzahl von Wechselwirkungen stabilisiert, wie z.B. Wasserstoffbrücken, ionische Bindungen und hydrophobe Wechselwirkungen. Wenn diese stabilisierenden Faktoren gestört oder vermindert werden, kann es zu einer Fehlfaltung oder Denaturierung des Proteins kommen, was schwerwiegende Auswirkungen auf die biologischen Funktionen haben kann.

Cauchy-Folge

Eine Cauchy-Folge ist eine spezielle Art von Zahlenfolge, die in der Analysis eine wichtige Rolle spielt. Eine Folge (xn)(x_n)(xn​) wird als Cauchy-Folge bezeichnet, wenn für jede noch so kleine positive Zahl ε>0\varepsilon > 0ε>0 ein natürlicher Zahlen NNN existiert, sodass für alle m,n≥Nm, n \geq Nm,n≥N gilt:

∣xm−xn∣<ε.|x_m - x_n| < \varepsilon.∣xm​−xn​∣<ε.

Das bedeutet, dass die Elemente der Folge ab einem bestimmten Index beliebig nah beieinander liegen. Cauchy-Folgen sind besonders wichtig, weil sie in vollständigen Räumen konvergieren, was bedeutet, dass sie einen Grenzwert haben, der ebenfalls im Raum liegt. In den reellen Zahlen und den komplexen Zahlen sind alle Cauchy-Folgen konvergent, was diesen Konzepten eine fundamentale Bedeutung in der Mathematik verleiht.

Finite-Volumen-Methode

Die Finite Volume Method (FVM) ist eine numerische Technik zur Lösung von partiellen Differentialgleichungen, die häufig in der Strömungsmechanik und Wärmeübertragung angewendet wird. Bei dieser Methode wird das gesamte Berechnungsgebiet in eine endliche Anzahl von Kontrollvolumen unterteilt, in denen die Erhaltungsgesetze für Masse, Impuls und Energie angewendet werden. Die Hauptidee besteht darin, die Integrale dieser Erhaltungsgesetze über jedes Kontrollvolumen zu formulieren und sie in eine diskrete Form zu überführen, was zu einem System von algebraischen Gleichungen führt.

Ein wesentlicher Vorteil der FVM ist, dass sie die physikalische Erhaltung von Größen wie Masse und Energie gewährleistet, da die Flüsse an den Grenzen der Kontrollvolumen explizit berechnet werden. Die Methode ist besonders geeignet für Probleme mit komplexen Geometrien und in der Lage, mit nichtlinearen Effekten und starken Gradienten umzugehen. In der mathematischen Formulierung wird oft das allgemeine Transportgleichungssystem verwendet, das in Form von:

∂∂t∫Viϕ dV+∫Siϕu⋅n dS=0\frac{\partial}{\partial t} \int_{V_i} \phi \, dV + \int_{S_i} \phi \mathbf{u} \cdot \mathbf{n} \, dS = 0∂t∂​∫Vi​​ϕdV+∫Si​​ϕu⋅ndS=0

dargestellt wird, wobei ϕ\phiϕ die