Die Riemannsche Zeta-Funktion ist eine komplexe Funktion, die in der Zahlentheorie eine zentrale Rolle spielt, insbesondere bei der Untersuchung der Verteilung der Primzahlen. Sie wird üblicherweise durch die Formel definiert:
für komplexe Zahlen mit einem Realteil größer als 1. Diese Funktion kann durch analytische Fortsetzung auf andere Werte von erweitert, mit Ausnahme von , wo sie einen einfachen Pol hat. Ein bemerkenswertes Ergebnis ist die Riemann-Hypothese, die besagt, dass alle nicht-trivialen Nullstellen der Zeta-Funktion eine Realteil von haben. Die Zeta-Funktion verbindet viele Bereiche der Mathematik, einschließlich der Kombinatorik und der mathematischen Physik, und hat bedeutende Anwendungen in der modernen Zahlentheorie.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.