StudierendeLehrende

Time Series

Eine Zeitreihe ist eine Sequenz von Datenpunkten, die in chronologischer Reihenfolge angeordnet sind und häufig über regelmäßige Zeitintervalle erfasst werden. Diese Daten können verschiedene Phänomene darstellen, wie zum Beispiel Aktienkurse, Temperaturmessungen oder Verkaufszahlen. Die Analyse von Zeitreihen ermöglicht es, Muster und Trends im Zeitverlauf zu identifizieren, Vorhersagen zu treffen und saisonale Schwankungen zu erkennen. Wichtige Aspekte der Zeitreihenanalyse sind die Trendkomponente, die langfristige Bewegungen darstellt, und die saisonale Komponente, die sich auf wiederkehrende Muster über festgelegte Zeiträume bezieht. Mathematisch wird eine Zeitreihe oft als Funktion f(t)f(t)f(t) dargestellt, wobei ttt die Zeit darstellt.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Dünnschichtinterferenz

Thin Film Interference beschreibt das Phänomen, das auftritt, wenn Lichtwellen, die von verschiedenen Schichten eines dünnen Films reflektiert werden, miteinander interferieren. Diese Interferenz kann zu bunten Mustern führen, die häufig in Seifenblasen oder auf Ölflecken auf Wasser zu beobachten sind. Wenn Licht auf den dünnen Film trifft, wird ein Teil des Lichts an der oberen und ein Teil an der unteren Grenzfläche reflektiert. Die beiden reflektierten Lichtstrahlen können sich überlagern, was zu konstruktiver (Verstärkung) oder destruktiver (Auslöschung) Interferenz führt, abhängig von der Dicke des Films, dem Einfallswinkel des Lichts und der Wellenlängen des Lichts. Die Bedingung für konstruktive Interferenz kann mathematisch ausgedrückt werden als:

2nd=(m+12)λ(m=0,1,2,…)2nd = (m + \frac{1}{2})\lambda \quad (m = 0, 1, 2, \ldots)2nd=(m+21​)λ(m=0,1,2,…)

wobei nnn der Brechungsindex des Films, ddd die Dicke des Films und λ\lambdaλ die Wellenlänge des Lichts ist. Im Gegensatz dazu gilt für destruktive Interferenz:

2nd=mλ(m=0,1,2nd = m\lambda \quad (m = 0, 1,2nd=mλ(m=0,1,

PWM-Modulation

Die Pulsweitenmodulation (PWM) ist eine Technik zur Steuerung der Leistung an elektrischen Geräten, indem das Verhältnis von Ein- und Ausschaltzeiten eines Signals variiert wird. Bei PWM wird ein digitales Signal mit einer konstanten Frequenz erzeugt, dessen Pulsbreite (die Zeit, in der das Signal auf "hoch" steht) moduliert wird, um die effektive Spannung zu steuern. Das bedeutet, dass je länger der Puls im Vergleich zur Gesamtperiode ist, desto mehr Energie wird zum Verbraucher geleitet.

Die PWM kann mathematisch durch die Duty-Cycle-Formel beschrieben werden:

Duty Cycle(%)=(TONTON+TOFF)×100\text{Duty Cycle} (\%) = \left( \frac{T_{ON}}{T_{ON} + T_{OFF}} \right) \times 100Duty Cycle(%)=(TON​+TOFF​TON​​)×100

wobei TONT_{ON}TON​ die Zeit ist, in der das Signal aktiv ist, und TOFFT_{OFF}TOFF​ die Zeit, in der das Signal inaktiv ist. Diese Methode findet breite Anwendung in der Steuerung von Motoren, der Dimmtechnik für LEDs und in der Regelung von Heizsystemen, da sie eine präzise Kontrolle der Leistung bei minimalem Energieverlust ermöglicht.

Principal-Agent-Modell Risikoteilung

Das Principal-Agent-Modell beschreibt die Beziehung zwischen einem Principal (Auftraggeber) und einem Agenten (Auftragnehmer), wobei der Agent im Auftrag des Principals handelt. In diesem Modell entstehen Risiken, da der Agent möglicherweise nicht die gleichen Interessen oder Informationen hat wie der Principal. Um diese Risiken zu teilen und zu minimieren, können verschiedene Mechanismen verwendet werden, wie z.B. Anreize oder Vertragsgestaltungen.

Ein zentrales Element des Risikoteilungsprozesses ist die Herausforderung, wie der Principal sicherstellen kann, dass der Agent die gewünschten Handlungen wählt, während der Agent gleichzeitig für seine eigenen Risiken entschädigt wird. Oft wird dies durch leistungsbasierte Entlohnung erreicht, die den Agenten motiviert, im besten Interesse des Principals zu handeln. Mathematisch kann dies durch die Maximierung der erwarteten Nutzenfunktionen beider Parteien dargestellt werden, was typischerweise zu einem Gleichgewicht führt, das als das Agenten-Modell-Gleichgewicht bekannt ist.

Mahler-Maß

Die Mahler Measure ist ein Konzept aus der algebraischen Geometrie und der Zahlentheorie, das zur Quantifizierung der Komplexität von Polynomen verwendet wird. Sie ist definiert für ein gegebenes mehrvariables Polynom P(x1,x2,…,xn)P(x_1, x_2, \ldots, x_n)P(x1​,x2​,…,xn​) und wird mathematisch als

M(P)=∏i=1nmax⁡(1,∣ai∣)M(P) = \prod_{i=1}^{n} \max(1, |a_i|) M(P)=i=1∏n​max(1,∣ai​∣)

beschrieben, wobei aia_iai​ die Koeffizienten des Polynoms sind. Die Mahler Measure misst dabei nicht nur den Betrag der Koeffizienten, sondern berücksichtigt auch die maximalen Werte, um eine Art "Volumen" im Koeffizientenraum zu erfassen. Diese Maßzahl hat bedeutende Anwendungen in der Diophantischen Geometrie, da sie hilft, die Größe und die Wurzeln von Polynomen zu charakterisieren. Zudem spielt die Mahler Measure eine Rolle in der Untersuchung von transzendentalen Zahlen und der arithmetischen Geometrie.

Hysterese-Effekt

Der Hysterese-Effekt beschreibt das Phänomen, bei dem der Zustand eines Systems von seiner Vorgeschichte abhängt. Dies bedeutet, dass das Verhalten eines Systems nicht nur von den aktuellen Bedingungen, sondern auch von den vorherigen Zuständen beeinflusst wird. Ein klassisches Beispiel ist die Magnetisierung eines ferromagnetischen Materials: Wenn das externe Magnetfeld erhöht und dann wieder verringert wird, bleibt die Magnetisierung nicht auf dem ursprünglichen Niveau, sondern folgt einer anderen Kurve.

Die Hysterese kann in verschiedenen Bereichen beobachtet werden, darunter:

  • Physik: bei magnetischen Materialien und mechanischen Systemen.
  • Ökonomie: wo die Auswirkungen von wirtschaftlichen Schocks auf den Arbeitsmarkt oder die Produktion länger anhalten können, als es die aktuellen Bedingungen vermuten lassen würden.
  • Biologie: bei biologischen Prozessen, wie z.B. der Reaktion von Zellen auf bestimmte Stimuli.

Mathematisch wird der Hysterese-Effekt oft durch eine Hysterese-Schleife dargestellt, die die Beziehung zwischen zwei Variablen beschreibt, wobei die Rückkehr zu einem vorherigen Zustand nicht linear erfolgt.

Symmetrie unter Eichtransformationen

Gauge Invariance ist ein fundamentales Konzept in der theoretischen Physik, das besagt, dass die Beschreibung eines physikalischen Systems unabhängig von bestimmten Wahlfreiheiten, den sogenannten Gauge-Freiheiten, ist. Dies bedeutet, dass verschiedene mathematische Darstellungen eines physikalischen Systems, die durch eine geeignete Transformation verbunden sind, zu den gleichen physikalischen Vorhersagen führen. Zum Beispiel in der Elektrodynamik ist die Wahl des potenziellen Feldes, das zur Beschreibung des elektrischen und magnetischen Feldes verwendet wird, eine Gauge-Freiheit.

Mathematisch lässt sich dies oft durch die Transformation eines Feldes ϕ\phiϕ darstellen, wobei die physikalischen Gesetze in der Form invariant bleiben:

ϕ′=ϕ+f(x)\phi' = \phi + f(x)ϕ′=ϕ+f(x)

Hierbei ist f(x)f(x)f(x) eine beliebige Funktion der Raum-Zeit-Koordinaten. Gauge Invariance spielt eine zentrale Rolle in der Quantenfeldtheorie und ist entscheidend für die Entwicklung der Standardmodelle der Teilchenphysik, da sie die Erhaltung von Energie, Impuls und anderen physikalischen Größen sichert.