StudierendeLehrende

Time Series

Eine Zeitreihe ist eine Sequenz von Datenpunkten, die in chronologischer Reihenfolge angeordnet sind und häufig über regelmäßige Zeitintervalle erfasst werden. Diese Daten können verschiedene Phänomene darstellen, wie zum Beispiel Aktienkurse, Temperaturmessungen oder Verkaufszahlen. Die Analyse von Zeitreihen ermöglicht es, Muster und Trends im Zeitverlauf zu identifizieren, Vorhersagen zu treffen und saisonale Schwankungen zu erkennen. Wichtige Aspekte der Zeitreihenanalyse sind die Trendkomponente, die langfristige Bewegungen darstellt, und die saisonale Komponente, die sich auf wiederkehrende Muster über festgelegte Zeiträume bezieht. Mathematisch wird eine Zeitreihe oft als Funktion f(t)f(t)f(t) dargestellt, wobei ttt die Zeit darstellt.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Jacobi-Matrix

Die Jacobi-Matrix ist ein fundamentales Konzept in der multivariaten Analysis, das die Ableitungen einer vektoriellen Funktion beschreibt. Sie stellt eine Matrix dar, die die partiellen Ableitungen einer Funktion mit mehreren Variablen in Bezug auf ihre Eingangswerte enthält. Wenn wir eine Funktion f:Rn→Rm\mathbf{f} : \mathbb{R}^n \rightarrow \mathbb{R}^mf:Rn→Rm betrachten, dann ist die Jacobi-Matrix JJJ gegeben durch:

J=[∂f1∂x1∂f1∂x2⋯∂f1∂xn∂f2∂x1∂f2∂x2⋯∂f2∂xn⋮⋮⋱⋮∂fm∂x1∂fm∂x2⋯∂fm∂xn]J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}J=​∂x1​∂f1​​∂x1​∂f2​​⋮∂x1​∂fm​​​∂x2​∂f1​​∂x2​∂f2​​⋮∂x2​∂fm​​​⋯⋯⋱⋯​∂xn​∂f1​​∂xn​∂f2​​⋮∂xn​∂fm​​​​

Hierbei sind fif_ifi​ die Komponenten der

Peltier-Kühleffekt

Der Peltier-Kühleffekt ist ein thermodynamisches Phänomen, das auftritt, wenn elektrischer Strom durch zwei unterschiedliche Materialien fließt, die an einem Kontaktpunkt verbunden sind. Dieser Effekt führt dazu, dass an einem Ende der Verbindung Wärme entzogen wird, während am anderen Ende Wärme freigesetzt wird. Dies geschieht aufgrund der unterschiedlichen thermischen Eigenschaften der Materialien, typischerweise Halbleiter, und wird oft in sogenannten Peltier-Elementen genutzt.

Die Kühlung an einem Ende kann mathematisch durch die Peltier-Wärme QQQ beschrieben werden, die durch die Formel

Q=ΠIQ = \Pi IQ=ΠI

ausgedrückt wird, wobei Π\PiΠ die Peltier-Koeffizienten und III die Stromstärke ist. Der Peltier-Kühleffekt findet Anwendung in verschiedenen Bereichen, wie z.B. in Kühlschränken, Thermoelektrischen Generatoren und in der Elektronik zur Kühlung von Prozessoren. Besonders vorteilhaft ist, dass dieser Effekt keine beweglichen Teile benötigt und somit wartungsarm ist.

Spinnennetz-Modell

Das Cobweb Model ist ein wirtschaftliches Modell, das die Dynamik von Angebot und Nachfrage in einem Markt beschreibt, in dem die Produzenten ihre Produktionsentscheidungen auf der Grundlage von Preisen in der vorhergehenden Periode treffen. Es wird oft verwendet, um die Preis- und Mengenschwankungen in Märkten für landwirtschaftliche Produkte zu veranschaulichen. Der Prozess beginnt mit einer anfänglichen Preisänderung, die zu einer Anpassung der Angebotsmenge führt. Diese Veränderung führt dann zu einer weiteren Preisänderung in der nächsten Periode, die wiederum die Angebotsveränderung beeinflusst.

Das Modell zeigt typischerweise eine spiralförmige Bewegung, die entweder zu einem stabilen Gleichgewicht oder zu zyklischen Preisschwankungen führen kann, abhängig von der Elastizität von Angebot und Nachfrage. Die mathematische Darstellung kann durch die Gleichungen Pt=f(Qt−1)P_t = f(Q_{t-1})Pt​=f(Qt−1​) und Qt=g(Pt−1)Q_t = g(P_{t-1})Qt​=g(Pt−1​) erfolgen, wobei PPP der Preis und QQQ die Menge darstellt.

Hausdorff-Dimension

Die Hausdorff-Dimension ist ein Konzept aus der Geometrie und der Maßtheorie, das verwendet wird, um die Dimension einer Menge zu bestimmen, die nicht unbedingt in den klassischen Dimensionen (z. B. 0, 1, 2, 3) klassifiziert werden kann. Sie erweitert die Idee der Dimension über die intuitive Vorstellung von Längen, Flächen und Volumina hinaus. Die Hausdorff-Dimension wird definiert durch die Verwendung von Hausdorff-Maßen, die die "Größe" einer Menge in Abhängigkeit von ihrer Struktur messen.

Um die Hausdorff-Dimension einer Menge AAA zu bestimmen, betrachtet man die sss-dimensionale Hausdorff-Maß Hs(A)H^s(A)Hs(A) und analysiert, wie sich diese Maße verhalten, wenn sss variiert. Die Hausdorff-Dimension dim⁡H(A)\dim_H(A)dimH​(A) ist dann das infimum aller sss (d. h. der kleinste Wert von sss), für das das Hausdorff-Maß Hs(A)H^s(A)Hs(A) gleich Null ist. Eine Menge kann also eine nicht-ganzzahlige Dimension haben, wie zum Beispiel die Cantor-Menge, die eine Hausdorff-Dimension von etwa 0,6309 hat, was zeigt, dass die Dimensionen in der fraktalen Geometr

Brillouin-Streulicht

Das Brillouin Light Scattering (BLS) ist ein physikalisches Phänomen, das auf der Wechselwirkung von Licht mit akustischen Wellen in einem Medium beruht. Wenn ein Lichtstrahl auf ein Material trifft, können die Photonen durch die elastischen Schwingungen der Atome im Material gestreut werden, was zu einer Frequenzverschiebung des gestreuten Lichts führt. Diese Frequenzverschiebung ist direkt mit der akustischen Wellenlänge und der Geschwindigkeit der Schallwellen im Material verknüpft und kann durch die Beziehung

Δf=2vλ\Delta f = \frac{2v}{\lambda}Δf=λ2v​

beschrieben werden, wobei Δf\Delta fΔf die Frequenzverschiebung, vvv die Schallgeschwindigkeit und λ\lambdaλ die Wellenlänge des Lichts ist. BLS wird häufig in der Materialforschung eingesetzt, um Informationen über mechanische Eigenschaften, wie Elastizität und Dämpfung, sowie über strukturelle Eigenschaften auf mikroskopischer Ebene zu gewinnen. Es ist eine nicht-invasive Technik, die sowohl in der Grundlagenforschung als auch in industriellen Anwendungen von Bedeutung ist.

Dag-Struktur

Die DAG-Struktur (Directed Acyclic Graph) ist ein fundamentales Konzept in der Informatik und Mathematik, das sich besonders in der Graphentheorie findet. Ein DAG besteht aus einer Menge von Knoten (oder Vertizes) und gerichteten Kanten, wobei jede Kante eine Richtung hat und kein Zyklus im Graphen existiert. Dies bedeutet, dass es unmöglich ist, von einem Knoten zurück zu diesem Knoten zu gelangen, was die Struktur ideal für Anwendungen wie Task Scheduling oder Datenfluss macht.

DAGs finden auch Verwendung in Bereichen wie Datenbankmanagement und Blockchain-Technologie, da sie Effizienz und Klarheit in den Beziehungen zwischen Datenpunkten bieten. Eine wichtige Eigenschaft von DAGs ist, dass sie eine topologische Sortierung ermöglichen, die eine lineare Reihenfolge der Knoten angibt, sodass für jede gerichtete Kante von Knoten AAA zu Knoten BBB gilt, dass AAA vor BBB kommt.