StudierendeLehrende

Capital Deepening Vs Widening

Capital Deepening und Capital Widening sind zwei Konzepte, die häufig in der Volkswirtschaftslehre verwendet werden, um Investitionen in Kapitalgüter zu beschreiben. Capital Deepening bezieht sich auf eine Erhöhung der Kapitalintensität in der Produktion, was bedeutet, dass Unternehmen in qualitativ hochwertigere oder produktivere Maschinen und Technologien investieren. Dies führt in der Regel zu einer höheren Produktivität der Arbeit, da jeder Arbeiter mit mehr oder besseren Werkzeugen ausgestattet ist.

Im Gegensatz dazu bezeichnet Capital Widening die Erhöhung der Gesamtkapitalmenge, ohne die Kapitalintensität zu verändern. Dies geschieht oft durch die Anschaffung zusätzlicher Maschinen oder Anlagen, um die Produktionskapazität zu erweitern. Während Capital Deepening oft zu einer effizienteren Produktion und einem Anstieg des Pro-Kopf-Einkommens führt, kann Capital Widening einfach die Produktionskapazität erhöhen, ohne notwendigerweise die Produktivität der bestehenden Arbeitskräfte zu verbessern.

Zusammengefasst:

  • Capital Deepening: Investitionen in bessere oder effizientere Kapitalgüter.
  • Capital Widening: Erweiterung des Kapitalstocks ohne Steigerung der Effizienz.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Finite Element

Die Finite-Elemente-Methode (FEM) ist ein numerisches Verfahren zur Lösung komplexer physikalischer Probleme, insbesondere in den Ingenieurwissenschaften und der Physik. Bei dieser Methode wird ein kontinuierliches Objekt in eine endliche Anzahl kleiner, diskreter Elemente unterteilt, die als Finite Elemente bezeichnet werden. Jedes Element wird durch einfache Gleichungen beschrieben, und die Eigenschaften des gesamten Systems werden durch die Kombination dieser Elemente bestimmt. Dies ermöglicht es, komplexe Geometrien und Materialverhalten zu modellieren, indem die Differentialgleichungen, die das Verhalten des Systems beschreiben, auf jedes Element angewendet werden.

Die FEM wird häufig in Bereichen wie Strukturmechanik, Thermodynamik und Fluiddynamik eingesetzt. Zu den Vorteilen der Methode gehören die Fähigkeit, die Auswirkungen von Variablen wie Materialeigenschaften und Belastungen auf das gesamte System zu analysieren und vorherzusagen. Typische Anwendungen umfassen die Berechnung von Spannungen in Bauteilen, die Analyse von Wärmeströmen oder die Untersuchung von Strömungsverhalten in Flüssigkeiten.

Maschinelles Lernen Regression

Machine Learning Regression ist ein Teilbereich des maschinellen Lernens, der sich mit der Vorhersage kontinuierlicher Werte beschäftigt. Dabei wird ein Modell trainiert, um die Beziehung zwischen einer oder mehreren unabhängigen Variablen (Features) und einer abhängigen Variable (Zielgröße) zu erfassen. Die häufigsten Algorithmen für die Regression sind lineare Regression, polynomiale Regression und Entscheidungsbaum-Regression.

Das Ziel ist es, eine Funktion f(x)f(x)f(x) zu finden, die die Eingabedaten xxx so abbildet, dass die Vorhersage yyy so genau wie möglich ist. Dies geschieht in der Regel durch Minimierung eines Fehlers, häufig gemessen durch die mittlere quadratische Abweichung (MSE):

MSE=1n∑i=1n(yi−f(xi))2\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2MSE=n1​i=1∑n​(yi​−f(xi​))2

Hierbei ist nnn die Anzahl der Datenpunkte, yiy_iyi​ der tatsächliche Wert und f(xi)f(x_i)f(xi​) der vorhergesagte Wert. Durch optimierte Algorithmen wie Gradient Descent wird das Modell kontinuierlich verbessert, um genauere Vorhersagen zu ermöglichen.

Kolmogorow-Axiome

Die Kolmogorov Axiome bilden die Grundlage der modernen Wahrscheinlichkeitstheorie und wurden von dem russischen Mathematiker Andrey Kolmogorov in den 1930er Jahren formuliert. Diese Axiome definieren eine Wahrscheinlichkeit als eine Funktion PPP, die auf einer Menge von Ereignissen basiert und die folgenden drei grundlegenden Eigenschaften erfüllt:

  1. Nicht-Negativität: Für jedes Ereignis AAA gilt P(A)≥0P(A) \geq 0P(A)≥0. Das bedeutet, dass die Wahrscheinlichkeit eines Ereignisses niemals negativ sein kann.
  2. Normierung: Die Wahrscheinlichkeit des gesamten Ereignisraums SSS ist 1, also P(S)=1P(S) = 1P(S)=1. Dies stellt sicher, dass die Summe aller möglichen Ergebnisse eines Zufallsexperiments gleich 100% ist.
  3. Additivität: Für zwei disjunkte Ereignisse AAA und BBB gilt P(A∪B)=P(A)+P(B)P(A \cup B) = P(A) + P(B)P(A∪B)=P(A)+P(B). Dies bedeutet, dass die Wahrscheinlichkeit, dass entweder das Ereignis AAA oder das Ereignis BBB eintritt, gleich der Summe ihrer individuellen Wahrscheinlichkeiten ist.

Diese Axiome sind entscheidend, um mathematisch konsistente und nützliche Modelle für die Analyse von Zufallsphänomenen zu entwickeln.

Random Forest

Random Forest ist ein leistungsfähiges und vielseitiges Ensemble-Lernverfahren, das für Klassifikations- und Regressionsaufgaben eingesetzt wird. Es basiert auf der Idee, mehrere Entscheidungsbäume zu kombinieren, um die Vorhersagegenauigkeit zu erhöhen und Überanpassung (Overfitting) zu reduzieren. Der Algorithmus erstellt viele zufällige Teilmengen der Trainingsdaten und trainiert auf jeder dieser Teilmengen einen Entscheidungsbaum. Dabei werden die Bäume durch zwei Hauptprozesse erstellt:

  1. Bootstrap-Aggregation (Bagging): Dabei werden zufällige Stichproben aus den Trainingsdaten gezogen, wobei einige Datenpunkte mehrfach ausgewählt werden können.
  2. Zufällige Merkmalsauswahl: Bei der Erstellung jedes Entscheidungsbaums wird nur eine zufällige Teilmenge der Merkmale berücksichtigt, was die Diversität der Bäume erhöht.

Die endgültige Vorhersage des Random Forest wird durch die Aggregation der Vorhersagen aller Bäume getroffen, wobei im Fall der Klassifikation das Mehrheitsvotum und im Fall der Regression der Durchschnitt der Vorhersagen verwendet wird. Dadurch sind Random Forest-Modelle oft robuster und weniger anfällig für Ausreißer im Vergleich zu einzelnen Entscheidungsbäumen.

Suffixbaum Ukkonen

Der Suffixbaum ist eine Datenstruktur, die es ermöglicht, effizient mit den Suffixen einer Zeichenkette zu arbeiten. Der Algorithmus von Ukkonen ist ein linearer Algorithmus zur Konstruktion von Suffixbäumen, der in O(n)O(n)O(n) Zeit funktioniert, wobei nnn die Länge der Eingabezeichenkette ist. Der Algorithmus nutzt eine iterative Methode, um den Baum schrittweise aufzubauen, indem er jedes Suffix der Eingabe verarbeitet. Dabei wird eine aktuelle Position im Baum verwendet, um wiederholte Berechnungen zu vermeiden und die Effizienz zu steigern. Ukkonens Algorithmus ist besonders nützlich für Anwendungen wie Mustererkennung, Bioinformatik und Textverarbeitung, da er schnelle Suchoperationen und Analyse von großen Datenmengen ermöglicht.

Gram-Schmidt-Orthogonalisierung

Die Gram-Schmidt-Orthogonalisierung ist ein Verfahren, um aus einer gegebenen Menge von linear unabhängigen Vektoren eine orthogonale (oder orthonormale) Basis zu erzeugen. Ähnlich wie bei der Basisumformung in einem Vektorraum wird jeder Vektor sukzessive modifiziert, um sicherzustellen, dass er orthogonal zu den bereits erzeugten Vektoren ist. Der Prozess umfasst folgende Schritte:

  1. Beginne mit einem Satz von linear unabhängigen Vektoren {v1,v2,…,vn}\{v_1, v_2, \ldots, v_n\}{v1​,v2​,…,vn​}.
  2. Setze den ersten orthogonalen Vektor u1=v1u_1 = v_1u1​=v1​.
  3. Für jeden weiteren Vektor vkv_kvk​ (mit k>1k > 1k>1) berechne:
uk=vk−∑j=1k−1⟨vk,uj⟩⟨uj,uj⟩uj u_k = v_k - \sum_{j=1}^{k-1} \frac{\langle v_k, u_j \rangle}{\langle u_j, u_j \rangle} u_juk​=vk​−j=1∑k−1​⟨uj​,uj​⟩⟨vk​,uj​⟩​uj​

Hierbei ist ⟨⋅,⋅⟩\langle \cdot, \cdot \rangle⟨⋅,⋅⟩ das innere Produkt, das den Vektoren ihre orthogonale Beziehung verleiht.
4. Optional kann man die Vektoren normalisieren, um eine orthonormale Basis zu erhalten, indem man jeden $