StudierendeLehrende

Keynesian Beauty Contest

Der Keynesian Beauty Contest ist ein Konzept aus der Ökonomie, das von dem britischen Ökonomen John Maynard Keynes eingeführt wurde. Es beschreibt, wie Investoren oft nicht nur ihre eigenen Meinungen über den Wert eines Vermögenswertes bilden, sondern auch versuchen, die Meinungen anderer Marktteilnehmer vorherzusagen. In diesem Wettbewerb geht es darum, den „schönsten“ Teilnehmer zu wählen, wobei die Schönheit nicht objektiv, sondern durch die Präferenzen der Mehrheit bestimmt wird.

In diesem Sinne könnten Anleger dazu verleitet werden, in Vermögenswerte zu investieren, die sie für die attraktivsten halten, basierend auf dem, was sie glauben, dass andere Investoren ebenfalls für attraktiv halten. Dies führt zu einer Kettenreaktion, in der die Marktpreise von Erwartungen und Spekulationen dominiert werden, anstatt von den zugrunde liegenden wirtschaftlichen Fundamentaldaten. Der Keynesian Beauty Contest verdeutlicht somit die Rolle von Erwartungen und Psychologie im Finanzmarkt und hebt die Abweichung zwischen Marktpreisen und tatsächlichem Wert hervor.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

LQR-Regler

Ein LQR-Controller (Linear-Quadratic Regulator) ist ein optimales Steuerungssystem, das häufig in der Regelungstechnik verwendet wird, um die Leistung eines dynamischen Systems zu verbessern. Er basiert auf der Minimierung einer Kostenfunktion, die typischerweise die quadratischen Abweichungen von den gewünschten Zuständen und den Steueraufwand berücksichtigt. Mathematisch wird dies durch die Kostenfunktion

J=∫0∞(xTQx+uTRu) dtJ = \int_0^{\infty} (x^T Q x + u^T R u) \, dtJ=∫0∞​(xTQx+uTRu)dt

definiert, wobei xxx der Zustand des Systems, uuu das Steuerungssignal, QQQ eine Gewichtungsmatrix für die Zustände und RRR eine Gewichtungsmatrix für die Steuerung ist. Der LQR-Controller berechnet die optimale Steuerstrategie, indem er die Rückführung des Zustands u=−Kxu = -Kxu=−Kx mit einer Matrix KKK verwendet, die aus den Lösungen der algebraischen Riccati-Gleichung abgeleitet wird. Diese Methode ermöglicht es, sowohl die Effizienz als auch die Stabilität des Systems zu gewährleisten und findet Anwendung in verschiedenen Bereichen wie Robotik, Automatisierung und Fahrzeugsteuerung.

Optimalsteuerungs-Riccati-Gleichung

Die Riccati-Gleichung ist ein zentrales Element in der optimalen Steuerungstheorie, insbesondere bei der Lösung von Problemen mit quadratischen Kostenfunktionen. Sie beschreibt die Beziehung zwischen dem Zustand eines dynamischen Systems und der optimalen Steuerung, die angewendet werden sollte, um die Kosten zu minimieren. In ihrer klassischen Form wird die Riccati-Gleichung oft als

P=ATP+PA−PBR−1BTP+QP = A^T P + PA - PBR^{-1}B^T P + QP=ATP+PA−PBR−1BTP+Q

formuliert, wobei PPP die Lösung der Gleichung ist, AAA und BBB die Systemmatrizen, QQQ die Kostenmatrix für den Zustand und RRR die Kostenmatrix für die Steuerung darstellen. Die Lösung PPP ist entscheidend für die Bestimmung der optimalen Rückführung der Steuerung, die typischerweise in der Form u=−R−1BTPxu = -R^{-1}B^T P xu=−R−1BTPx gegeben ist. Somit ermöglicht die Riccati-Gleichung die Berechnung der optimalen Steuerung in linearen quadratischen Regler-Problemen, was in vielen Anwendungen wie der Regelungstechnik und der Finanzwirtschaft von Bedeutung ist.

Austenitische Umwandlung

Die austenitische Transformation ist ein bedeutender Prozess in der Metallurgie, insbesondere bei der Behandlung von Stahl. Sie beschreibt den Übergang von einer kristallinen Struktur in die austenitische Phase, die bei bestimmten Temperaturen und chemischen Zusammensetzungen auftritt. In der Regel geschieht diese Transformation bei Temperaturen über 727 °C für kohlenstoffhaltigen Stahl, wo die Struktur von Ferrit oder Perlit in austenitische Gitterformen übergeht.

Die austenitische Phase ist durch ihre hohe Duktilität und Zähigkeit gekennzeichnet, was sie ideal für verschiedene Anwendungen macht. Dieser Prozess wird häufig durch kontrolliertes Erhitzen und anschließendes Abkühlen (z.B. durch Abschrecken oder langsames Abkühlen) gesteuert, um die gewünschten mechanischen Eigenschaften des Stahls zu erreichen. Durch die gezielte Manipulation der austenitischen Transformation können Ingenieure die Festigkeit, Härte und Zähigkeit von Stahlprodukten optimieren.

Taylor-Regel-Zinsrichtlinie

Die Taylor Rule ist ein wirtschaftliches Modell, das von dem Ökonomen John B. Taylor entwickelt wurde, um die Zinspolitik von Zentralbanken zu steuern. Es basiert auf der Annahme, dass die Zentralbanken den nominalen Zinssatz in Abhängigkeit von der Inflation und der Produktionslücke anpassen sollten. Die Regel wird häufig in der folgenden Formulierung dargestellt:

i=r∗+π+0.5(π−π∗)+0.5(y−yˉ)i = r^* + \pi + 0.5(\pi - \pi^*) + 0.5(y - \bar{y})i=r∗+π+0.5(π−π∗)+0.5(y−yˉ​)

Hierbei ist iii der nominale Zinssatz, r∗r^*r∗ der neutrale Zinssatz, π\piπ die aktuelle Inflationsrate, π∗\pi^*π∗ die Zielinflationsrate, yyy das tatsächliche Bruttoinlandsprodukt (BIP) und yˉ\bar{y}yˉ​ das potenzielle BIP. Die Taylor-Regel legt nahe, dass bei steigender Inflation oder wenn die Wirtschaft über ihrem Potenzial wächst, die Zinsen erhöht werden sollten, um eine Überhitzung zu verhindern. Umgekehrt sollten die Zinsen gesenkt werden, wenn die Inflation unter dem Zielwert liegt oder die Wirtschaft schwach ist. Diese Regel bietet somit einen klaren Rahmen für die Geldpolitik und unterstützt die Transparenz und Vorhersehbarkeit von Zentral

Karger-Schnitt

Karger’s Min Cut ist ein probabilistischer Algorithmus zur Bestimmung des minimalen Schnitts in einem ungerichteten Graphen. Der Algorithmus basiert auf der Idee, dass man wiederholt zufällig Kanten zwischen den Knoten des Graphen auswählt und diese zusammenführt, um einen neuen, kleineren Graphen zu erstellen. Durch diese Kollapsierung der Knoten werden Kanten entfernt, und der Algorithmus verfolgt dabei das Ziel, den minimalen Schnitt zu finden, der die Knoten in zwei Gruppen trennt.

Ein entscheidender Aspekt des Algorithmus ist, dass er eine Monte-Carlo-Methode verwendet, um das Ergebnis zu approximieren, was bedeutet, dass er mehrere Durchläufe benötigt, um mit hoher Wahrscheinlichkeit den tatsächlichen minimalen Schnitt zu finden. Die Laufzeit des Algorithmus beträgt O(n2log⁡n)O(n^2 \log n)O(n2logn), wobei nnn die Anzahl der Knoten im Graphen ist. Karger’s Min Cut ist besonders nützlich in großen Graphen, da er im Vergleich zu deterministischen Ansätzen oft weniger Rechenressourcen benötigt.

Spin-Torque-Oszillator

Ein Spin-Torque-Oszillator (STO) ist ein innovatives Gerät, das die Spin-Dynamik von Elektronen nutzt, um hochfrequente Signale zu erzeugen. Es funktioniert, indem es einen elektrischen Strom durch ein ferromagnetisches Material leitet, das mit einem anderen Material, typischerweise einem nicht-magnetischen, verbunden ist. Der Strom erzeugt ein Spin-Polarisationseffekt, der die Magnetisierung des ferromagnetischen Materials beeinflusst und so Oszillationen in der Magnetisierung auslöst. Diese Oszillationen können Frequenzen im Gigahertzbereich erreichen und sind daher für Anwendungen in der Hochfrequenztechnologie, wie z.B. in der Datenkommunikation und -verarbeitung, von großem Interesse.

Zusammengefasst sind die Hauptmerkmale eines Spin-Torque-Oszillators:

  • Erzeugung von Hochfrequenzsignalen: Ideal für Kommunikationsanwendungen.
  • Nutzung der Spin-Dynamik: Kombiniert Elektronenspin und elektrische Ströme.
  • Potenzial für Miniaturisierung: Kann in kompakte Schaltungen integriert werden.