StudierendeLehrende

Keynesian Beauty Contest

Der Keynesian Beauty Contest ist ein Konzept aus der Ökonomie, das von dem britischen Ökonomen John Maynard Keynes eingeführt wurde. Es beschreibt, wie Investoren oft nicht nur ihre eigenen Meinungen über den Wert eines Vermögenswertes bilden, sondern auch versuchen, die Meinungen anderer Marktteilnehmer vorherzusagen. In diesem Wettbewerb geht es darum, den „schönsten“ Teilnehmer zu wählen, wobei die Schönheit nicht objektiv, sondern durch die Präferenzen der Mehrheit bestimmt wird.

In diesem Sinne könnten Anleger dazu verleitet werden, in Vermögenswerte zu investieren, die sie für die attraktivsten halten, basierend auf dem, was sie glauben, dass andere Investoren ebenfalls für attraktiv halten. Dies führt zu einer Kettenreaktion, in der die Marktpreise von Erwartungen und Spekulationen dominiert werden, anstatt von den zugrunde liegenden wirtschaftlichen Fundamentaldaten. Der Keynesian Beauty Contest verdeutlicht somit die Rolle von Erwartungen und Psychologie im Finanzmarkt und hebt die Abweichung zwischen Marktpreisen und tatsächlichem Wert hervor.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Tintenfisch-Magnetometer

Ein Squid Magnetometer ist ein hochsensitives Messinstrument zur Erfassung von magnetischen Feldern. Es basiert auf der Superconducting Quantum Interference Device (SQUID)-Technologie, die es ermöglicht, extrem kleine Magnetfelder zu detektieren, die oft im Nanotesla-Bereich liegen. Diese Geräte nutzen die quantenmechanischen Eigenschaften von supraleitenden Materialien, um Änderungen im Magnetfeld präzise zu messen.

Die Funktionsweise beruht darauf, dass ein supraleitender Ring, der mit zwei Josephson-Kontakten ausgestattet ist, eine empfindliche Reaktion auf magnetische Flüsse zeigt. Ein typisches Anwendungsspektrum umfasst die Geophysik, Materialwissenschaften und Medizin, insbesondere in der Magnetresonanztomographie (MRT). Die Fähigkeit, magnetische Felder mit hoher Genauigkeit zu messen, macht das Squid Magnetometer zu einem unverzichtbaren Werkzeug in der modernen Forschung und Industrie.

Pigou-Effekt

Der Pigou Effect beschreibt den Zusammenhang zwischen dem realen Geldangebot und dem Konsumverhalten der Haushalte in einer Volkswirtschaft. Wenn die Preise sinken, erhöht sich der reale Wert des Geldes, das die Haushalte besitzen; das heißt, ihre Kaufkraft steigt. Dies führt dazu, dass die Konsumenten mehr konsumieren, weil sie sich wohlhabender fühlen. Ein Rückgang des Preisniveaus kann also eine Erhöhung der gesamtwirtschaftlichen Nachfrage bewirken, was in der Regel zu einem Anstieg des Bruttoinlandsprodukts (BIP) führt. Der Pigou Effect ist besonders relevant in Zeiten der Deflation oder wirtschaftlichen Rezession, wo eine Verbesserung der realen Wohlstandsverhältnisse durch sinkende Preise die wirtschaftliche Aktivität ankurbeln kann.

Fibonacci-Haufenoperationen

Ein Fibonacci-Heap ist eine spezielle Art von Datenstruktur, die eine Sammlung von Heap-basierten Bäumen verwendet, um eine effiziente Umsetzung von Prioritätswarteschlangen zu ermöglichen. Die Hauptoperationen eines Fibonacci-Heaps sind Einfügen, Verschmelzen, Minimum Finden, Löschen und Decrease-Key.

  • Einfügen: Ein neuer Knoten wird erstellt und in die Wurzelliste des Heaps eingefügt, was in amortisierter Zeit von O(1)O(1)O(1) erfolgt.
  • Minimum Finden: Der Zugriff auf das Minimum geschieht ebenfalls in O(1)O(1)O(1), da der Fibonacci-Heap eine Zeigerreferenz auf das Minimum behält.
  • Decrease-Key: Um den Wert eines Knotens zu verringern, wird der Knoten möglicherweise aus seinem aktuellen Baum entfernt und in einen neuen Baum eingefügt, was in amortisierter Zeit von O(1)O(1)O(1) geschieht.
  • Löschen: Diese Operation erfordert zunächst die Durchführung einer Decrease-Key-Operation, gefolgt von einer Löschung des Minimums, und hat eine amortisierte Zeitkomplexität von O(log⁡n)O(\log n)O(logn).

Durch die Verwendung dieser Operationen kann der Fibonacci-Heap eine effiziente Handhabung von Prioritätswarteschlangen ermöglichen, besonders in Algorithmen wie Dijkstra

PID-Gewinnanpassung

PID Gain Scheduling ist eine Technik, die in der Regelungstechnik verwendet wird, um die Leistung von PID-Reglern (Proportional-Integral-Derivativ-Regler) unter variierenden Betriebsbedingungen zu optimieren. Bei dieser Methode werden die Reglerparameter KpK_pKp​ (Proportional), KiK_iKi​ (Integral) und KdK_dKd​ (Derivativ) dynamisch angepasst, um den unterschiedlichen Anforderungen des Systems gerecht zu werden. Dies ist besonders nützlich in Anwendungen, bei denen das Systemverhalten stark von externen Faktoren wie Geschwindigkeit, Temperatur oder Druck abhängt.

Die Anpassung erfolgt in der Regel mithilfe von Vorlauf- oder Rücklaufkurven, die die Beziehung zwischen den Reglerparametern und dem aktuellen Betriebszustand darstellen. Der Regler wechselt zwischen verschiedenen Satz von PID-Gewinnen, je nach dem aktuellen Zustand, um eine optimale Regelung zu gewährleisten. Dadurch wird die Reaktionszeit verbessert und die Stabilität des Systems erhöht, was zu einer effizienteren und zuverlässigeren Steuerung führt.

Exzitonrekombination

Die Exciton-Rekombination ist ein physikalischer Prozess, der in Halbleitern und anderen Materialien auftritt, wenn ein gebundener Zustand aus einem Elektron und einem Loch, bekannt als Exciton, zerfällt. Bei der Rekombination kann das Exciton in einen energetisch niedrigeren Zustand übergehen, wobei die Energie in Form von Photonen (Licht) oder Wärme freigesetzt wird. Dieser Prozess ist von zentraler Bedeutung für das Verständnis von optoelektronischen Bauelementen, wie z.B. Solarzellen und LEDs.

Die Rekombination kann in verschiedenen Formen auftreten, darunter:

  • Strahlende Rekombination: Hierbei wird ein Photon emittiert.
  • Nicht-strahlende Rekombination: Bei dieser Art wird die Energie in Form von Wärme dissipiert, ohne Licht zu erzeugen.

Mathematisch kann die Rekombinationsrate RRR häufig durch die Beziehung R=βnpR = \beta n pR=βnp beschrieben werden, wobei nnn die Elektronenkonzentration, ppp die Lochkonzentration und β\betaβ eine Rekombinationskonstante ist.

Green'scher Satz Beweis

Das Green’s Theorem ist ein fundamentales Resultat in der Vektorrechnung, das eine Beziehung zwischen einem Linienintegral entlang einer geschlossenen Kurve und einem Doppelintegral über die Fläche, die von dieser Kurve umschlossen wird, herstellt. Es lautet formal:

∮C(P dx+Q dy)=∬R(∂Q∂x−∂P∂y)dA\oint_C (P \, dx + Q \, dy) = \iint_R \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA∮C​(Pdx+Qdy)=∬R​(∂x∂Q​−∂y∂P​)dA

wobei CCC die geschlossene Kurve und RRR die von CCC umschlossene Fläche ist. Der Beweis erfolgt in der Regel durch die Anwendung des Fundamentalsatzes der Analysis und der Zerlegung der Fläche RRR in kleine Rechtecke.

  1. Zuerst wird das Doppelintegral in kleinere Teilflächen zerlegt.
  2. Für jedes Rechteck wird das Linienintegral entlang der Grenze betrachtet, was durch den Satz von Stokes unterstützt wird.
  3. Nach der Anwendung des Satzes und der Summation über alle Teilflächen ergibt sich die Verbindung zwischen den beiden Integralen.
  4. Schließlich wird gezeigt, dass die Summe der Linienintegrale die gesamte Fläche abdeckt und somit die Gleichheit zwischen dem Linien- und dem Flächenintegral bestätigt wird.