Das Kleinberg’s Small-World Model ist ein mathematisches Modell, das die Struktur sozialer Netzwerke und deren Verbindungen beschreibt. Es wurde von Duncan J. Watts und Steven H. Strogatz im Jahr 1998 entwickelt und zeigt, wie in großen Netzwerken trotz räumlicher Trennung eine hohe Erreichbarkeit zwischen den Knotenpunkten besteht. Das Modell kombiniert lokale Verbindungen (Nachbarn) und globale Verbindungen (zufällige Verbindungen), was dazu führt, dass jeder Knoten über nur wenige Schritte mit jedem anderen Knoten verbunden ist.
Mathematisch wird das Modell häufig durch den Parameter beschrieben, der die Wahrscheinlichkeit repräsentiert, mit der Nachbarn durch Zufallsverbindungen ersetzt werden. Bei handelt es sich um ein reguläres Gitter, während bei das Netzwerk vollständig zufällig ist. Dieses Gleichgewicht zwischen Lokalität und Zufälligkeit schafft die charakteristische Kleinberg-Eigenschaft, dass die durchschnittliche Distanz zwischen Knoten logarithmisch in der Netzwerkgröße wächst.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.