StudierendeLehrende

Pareto Efficiency

Pareto Efficiency, auch als Pareto-Optimalität bekannt, ist ein Konzept aus der Wirtschaftswissenschaft, das eine Ressourcenzuteilung beschreibt, bei der es nicht möglich ist, jemanden besserzustellen, ohne dabei eine andere Person schlechterzustellen. In einem Zustand der Pareto-Effizienz sind alle Ressourcen so verteilt, dass jeder Nutzen maximiert ist, und jede Umverteilung der Ressourcen zu einer Person zu Lasten einer anderen Person führen würde.

Mathematisch ausgedrückt ist eine Verteilung von Ressourcen xxx Pareto-effizient, wenn es keinen anderen Punkt yyy gibt, so dass yyy mindestens eine Person besserstellt und keine Person schlechterstellt. Ein Beispiel zur Veranschaulichung: Angenommen, es gibt zwei Personen, A und B, und sie teilen sich einen Kuchen. Wenn A mehr Kuchen bekommt, kann B nur weniger bekommen, was bedeutet, dass die aktuelle Verteilung Pareto-effizient ist, solange es keine Möglichkeit gibt, beide besserzustellen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Ferroelectric-Phasenübergangsmechanismen

Ferroelectric Phase Transition Mechanisms beschreiben die Prozesse, durch die Materialien von einem nicht-ferroelectricen Zustand in einen ferroelectricen Zustand übergehen. Dieser Übergang ist typischerweise mit einer Änderung der symmetrischen Eigenschaften des Kristallgitters verbunden. Kritische Punkte wie Temperatur und Druck spielen dabei eine entscheidende Rolle, und der Übergang kann durch verschiedene Mechanismen wie ordnungs-disordnungs oder strukturale Phasenübergänge erfolgen.

  1. Ordnung-Disordnung-Mechanismus: In diesem Fall wird der Übergang durch die Anordnung der Ionen im Kristallgitter beeinflusst, die bei höheren Temperaturen chaotisch sind und sich bei niedrigeren Temperaturen in eine geordnete Struktur umwandeln.

  2. Struktureller Phasenübergang: Hierbei kommt es zu einer Veränderung der Kristallstruktur selbst, was oft mit einer Energieänderung verbunden ist und durch die minimierte Energie des Systems bei bestimmten Bedingungen hervorgerufen wird.

In mathematischer Form kann der Energieunterschied zwischen den Phasen durch die Gibbs freie Energie GGG beschrieben werden, die für verschiedene Zustände optimiert wird:

ΔG=Gferro−Gpara<0\Delta G = G_{\text{ferro}} - G_{\text{para}} < 0ΔG=Gferro​−Gpara​<0

Ein negativer Unterschied zeigt an, dass die ferroelectric Phase energetisch bevorzug

Genomweite Assoziation

Die Genome-Wide Association Study (GWAS) ist eine Forschungstechnik, die darauf abzielt, genetische Varianten zu identifizieren, die mit bestimmten Krankheiten oder Merkmalen in Verbindung stehen. Bei dieser Methode werden die Genome vieler Individuen untersucht, um Unterschiede in den DNA-Sequenzen zu finden, die mit einer bestimmten Erkrankung oder einem bestimmten Trait assoziiert sind. Typischerweise werden Millionen von genetischen Markern (z. B. Single Nucleotide Polymorphisms, SNPs) analysiert, um statistische Assoziationen zu identifizieren.

Die grundlegende Annahme von GWAS ist, dass bestimmte genetische Variationen einen Einfluss auf die Anfälligkeit für Krankheiten oder bestimmte Eigenschaften haben. Die Ergebnisse solcher Studien können dazu beitragen, biologische Mechanismen zu verstehen, die Krankheiten zugrunde liegen, und neue Ansätze für die Diagnose sowie Therapie zu entwickeln. Eine Herausforderung bei GWAS ist die Notwendigkeit, große Stichprobengrößen zu verwenden, um ausreichend statistische Power zu gewährleisten und falsch-positive Ergebnisse zu minimieren.

Laplace-Transformation

Die Laplace-Transformation ist ein wichtiges mathematisches Werkzeug, das in der Ingenieurwissenschaft und Mathematik verwendet wird, um Differentialgleichungen zu lösen und Systeme zu analysieren. Sie wandelt eine Funktion f(t)f(t)f(t), die von der Zeit ttt abhängt, in eine Funktion F(s)F(s)F(s), die von einer komplexen Frequenz sss abhängt, um. Die allgemeine Form der Laplace-Transformation ist gegeben durch die Gleichung:

F(s)=∫0∞e−stf(t) dtF(s) = \int_0^{\infty} e^{-st} f(t) \, dtF(s)=∫0∞​e−stf(t)dt

Hierbei ist e−ste^{-st}e−st der Dämpfungsfaktor, der hilft, das Verhalten der Funktion im Zeitbereich zu steuern. Die Transformation ist besonders nützlich, da sie die Lösung von Differentialgleichungen in algebraische Gleichungen umwandelt, was die Berechnungen erheblich vereinfacht. Die Rücktransformation, die als Inverse Laplace-Transformation bekannt ist, ermöglicht es, die ursprüngliche Funktion f(t)f(t)f(t) aus F(s)F(s)F(s) zurückzugewinnen.

Faser-Bragg-Gitter-Sensoren

Fiber Bragg Grating (FBG) Sensoren sind optische Sensoren, die in Glasfasern integriert sind und zur Messung von physikalischen Größen wie Temperatur, Dehnung und Druck verwendet werden. Sie basieren auf einem periodischen Refraktionsindexprofil, das in den Kern einer Glasfaser eingeprägt wird, wodurch bestimmte Wellenlängen des Lichts reflektiert werden. Diese reflektierte Wellenlänge, auch als Bragg-Wellenlänge bekannt, ist gegeben durch die Gleichung:

λB=2nΛ\lambda_B = 2n\LambdaλB​=2nΛ

Hierbei ist λB\lambda_BλB​ die Bragg-Wellenlänge, nnn der effektive Brechungsindex der Faser und Λ\LambdaΛ die Gitterkonstante. Wenn sich die physikalischen Bedingungen ändern, wie zum Beispiel Temperatur oder Dehnung, verändert sich die Bragg-Wellenlänge, was zu einer Verschiebung des reflektierten Lichtspektrums führt. Diese Verschiebung kann präzise gemessen werden, was FBG-Sensoren zu einer hervorragenden Wahl für Anwendungen in der Überwachung von Bauwerken, der Luft- und Raumfahrt sowie der Medizintechnik macht. Ihre hohe Empfindlichkeit, gute Stabilität und Kompatibilität mit bestehenden Glasfasernetzen machen sie besonders wertvoll in der modernen Sens

Haar-Kaskade

Die Haar Cascade ist ein effektives Verfahren zur Objekterkennung, das häufig in der Computer Vision eingesetzt wird, insbesondere zur Gesichtserkennung. Es basiert auf der Verwendung von Haar-ähnlichen Merkmalen, die aus dem Bild extrahiert werden, um die Präsenz eines Objekts zu identifizieren. Der Prozess beginnt mit der Erstellung eines Cascade-Klassifikators, der aus mehreren Stufen besteht, wobei jede Stufe ein einfaches Entscheidungsmodell darstellt, das die Möglichkeit eines Objekts im Bild bewertet.

Der Vorteil dieser Methode liegt in ihrer Effizienz, da sie nur die Region des Bildes untersucht, die mit hoher Wahrscheinlichkeit das gesuchte Objekt enthält. Die Haar Cascade nutzt außerdem ein Verfahren namens AdaBoost, um relevante Merkmale auszuwählen und das Klassifikationsmodell zu optimieren. Dadurch kann sie schnell und präzise auf verschiedene Bildgrößen und -formatierungen reagieren, was sie zu einer beliebten Wahl für Echtzeitanwendungen macht.

Dirichlet-Reihe

Eine Dirichlet-Reihe ist eine spezielle Art von unendlicher Reihe, die häufig in der Zahlentheorie vorkommt. Sie hat die Form

D(s)=∑n=1∞annsD(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}D(s)=n=1∑∞​nsan​​

wobei sss eine komplexe Zahl ist und ana_nan​ eine Folge von Koeffizienten darstellt, die oft mit den Eigenschaften von Zahlen verknüpft sind, wie z.B. den Werten von Multiplikative Funktionen. Dirichlet-Reihen sind besonders wichtig in der Untersuchung der Verteilung von Primzahlen und in der analytischen Zahlentheorie. Ein bekanntes Beispiel ist die Riemannsche Zeta-Funktion, die durch die Dirichlet-Reihe

ζ(s)=∑n=1∞1ns\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}ζ(s)=n=1∑∞​ns1​

definiert ist und eine zentrale Rolle in der Theorie der Primzahlen spielt. Die Konvergenz einer Dirichlet-Reihe hängt stark von der Wahl der Koeffizienten und der Position von sss im komplexen Zahlenraum ab.