StudierendeLehrende

Cost-Push Inflation

Cost-Push Inflation tritt auf, wenn die Produktionskosten für Unternehmen steigen, was dazu führt, dass sie die höheren Kosten an die Verbraucher weitergeben. Diese Art der Inflation kann durch verschiedene Faktoren ausgelöst werden, wie z.B. steigende Rohstoffpreise, Löhne oder Steuern. Wenn Unternehmen gezwungen sind, mehr für Inputs zu bezahlen, erhöhen sie in der Regel die Preise für ihre Produkte, um ihre Gewinnmargen zu schützen. Dies führt zu einer allgemeinen Preissteigerung, auch wenn die Nachfrage nach Gütern und Dienstleistungen nicht steigt. Ein bekanntes Beispiel sind plötzliche Anstiege der Ölpreise, die die Transport- und Produktionskosten in vielen Branchen erhöhen können. Infolgedessen können Konsumenten weniger für die gleichen Waren und Dienstleistungen kaufen, was die Kaufkraft verringert.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Finanzielle Ansteckung Netzwerkeffekte

Financial Contagion Network Effects beziehen sich auf die Verbreitung von finanziellen Schocks oder Krisen innerhalb eines Netzwerks von verbundenen Institutionen, Märkten oder Volkswirtschaften. Diese Effekte treten auf, wenn die finanziellen Probleme eines einzelnen Akteurs, wie beispielsweise einer Bank oder eines Unternehmens, sich auf andere Akteure ausbreiten und eine Kettenreaktion auslösen. Die Mechanismen, die zu solchen Ansteckungen führen, sind vielfältig und können durch Interdependenzen in den Kreditbeziehungen, Liquiditätsengpässe oder den Verlust des Vertrauens in das gesamte System verursacht werden.

Ein Beispiel für diese Dynamik ist die globale Finanzkrise von 2008, bei der die Probleme im US-Immobilienmarkt rasch auf internationale Banken und Märkte übergriffen. Um die Risiken von finanziellen Ansteckungen besser zu verstehen, verwenden Ökonomen oft Netzwerkanalysen, um die Struktur der Verbindungen zwischen den Akteuren zu untersuchen. Dies ermöglicht es, potenzielle Schwachstellen im System zu identifizieren und präventive Maßnahmen zu entwickeln, um die Stabilität des Finanzsystems zu gewährleisten.

Geldpolitische Instrumente

Die Geldpolitik umfasst eine Reihe von Werkzeugen, die von Zentralbanken eingesetzt werden, um die Wirtschaft zu steuern und die Inflation zu kontrollieren. Zu den wichtigsten Geldpolitikinstrumenten gehören die Leitzinsen, die Offenmarktgeschäfte und die Mindestreserveanforderungen. Durch die Anpassung der Leitzinsen kann die Zentralbank beeinflussen, wie teuer oder günstig Kredite sind, was wiederum das Verbraucherverhalten und die Investitionen der Unternehmen beeinflusst. Bei Offenmarktgeschäften kauft oder verkauft die Zentralbank Staatsanleihen, um die Geldmenge im Umlauf zu erhöhen oder zu verringern. Mindestreserveanforderungen bestimmen, wie viel Geld Banken als Reserve halten müssen, was ihre Fähigkeit einschränkt, Kredite zu vergeben. Diese Werkzeuge helfen dabei, das wirtschaftliche Gleichgewicht zu wahren und die Stabilität des Finanzsystems zu fördern.

Geometrisches Deep Learning

Geometric Deep Learning ist ein aufstrebendes Forschungsfeld, das sich mit der Erweiterung von Deep-Learning-Methoden auf Daten befasst, die nicht auf regulären Gitterstrukturen, wie z.B. Bilder oder Texte, basieren. Stattdessen wird der Fokus auf nicht-euklidische Daten gelegt, wie z.B. Graphen, Mannigfaltigkeiten und Netzwerke. Diese Ansätze nutzen mathematische Konzepte der Geometrie und Topologie, um die zugrunde liegenden Strukturen der Daten zu erfassen und zu analysieren. Zu den Schlüsseltechniken gehören Graph Neural Networks (GNNs), die Beziehungen zwischen Knoten in einem Graphen lernen, sowie geometrische Convolutional Networks, die die Eigenschaften von Daten in komplexen Räumen berücksichtigen.

Ein wesentliches Ziel von Geometric Deep Learning ist es, die Generalität und Flexibilität von Deep-Learning-Modellen zu erhöhen, um sie auf eine Vielzahl von Anwendungen anzuwenden, von der chemischen Datenanalyse bis hin zur sozialen Netzwerkanalyse. Die mathematische Grundlage dieser Methoden ermöglicht es, die Invarianz und Konstanz von Funktionen unter verschiedenen Transformationen zu bewahren, was entscheidend für die Verarbeitung und das Verständnis komplexer Datenstrukturen ist.

PWM-Modulation

Die Pulsweitenmodulation (PWM) ist eine Technik zur Steuerung der Leistung an elektrischen Geräten, indem das Verhältnis von Ein- und Ausschaltzeiten eines Signals variiert wird. Bei PWM wird ein digitales Signal mit einer konstanten Frequenz erzeugt, dessen Pulsbreite (die Zeit, in der das Signal auf "hoch" steht) moduliert wird, um die effektive Spannung zu steuern. Das bedeutet, dass je länger der Puls im Vergleich zur Gesamtperiode ist, desto mehr Energie wird zum Verbraucher geleitet.

Die PWM kann mathematisch durch die Duty-Cycle-Formel beschrieben werden:

Duty Cycle(%)=(TONTON+TOFF)×100\text{Duty Cycle} (\%) = \left( \frac{T_{ON}}{T_{ON} + T_{OFF}} \right) \times 100Duty Cycle(%)=(TON​+TOFF​TON​​)×100

wobei TONT_{ON}TON​ die Zeit ist, in der das Signal aktiv ist, und TOFFT_{OFF}TOFF​ die Zeit, in der das Signal inaktiv ist. Diese Methode findet breite Anwendung in der Steuerung von Motoren, der Dimmtechnik für LEDs und in der Regelung von Heizsystemen, da sie eine präzise Kontrolle der Leistung bei minimalem Energieverlust ermöglicht.

Hamilton-Jacobi-Bellman

Der Hamilton-Jacobi-Bellman (HJB) Ansatz ist eine fundamentale Methode in der optimalen Steuerungstheorie und der dynamischen Programmierung. Er basiert auf der Idee, dass die optimale Steuerung eines Systems durch die Minimierung einer Kostenfunktion über die Zeit erreicht wird. Der HJB-Ansatz formuliert das Problem in Form einer partiellen Differentialgleichung, die die optimalen Werte der Kostenfunktion in Abhängigkeit von den Zuständen des Systems beschreibt. Die grundlegende Gleichung lautet:

∂V∂t+min⁡u(L(x,u)+∂V∂xf(x,u))=0\frac{\partial V}{\partial t} + \min_{u} \left( L(x, u) + \frac{\partial V}{\partial x} f(x, u) \right) = 0∂t∂V​+umin​(L(x,u)+∂x∂V​f(x,u))=0

Hierbei ist V(x,t)V(x, t)V(x,t) die Wertfunktion, die die minimalen Kosten von einem Zustand xxx zum Zeitpunkt ttt beschreibt, L(x,u)L(x, u)L(x,u) die Kostenfunktion und f(x,u)f(x, u)f(x,u) die Dynamik des Systems. Die HJB-Gleichung ermöglicht es, die optimale Steuerung zu finden, indem man die Ableitung der Wertfunktion und die Kosten minimiert. Diese Methode findet Anwendung in vielen Bereichen, einschließlich Finanzwirtschaft, Robotik und Regelungstechnik.

Np-schwere Probleme

Np-Hard Probleme sind eine Klasse von Problemen in der Informatik, die als besonders schwierig gelten. Ein Problem wird als Np-Hard bezeichnet, wenn es mindestens so schwierig ist wie das schwierigste Problem in der Klasse NP (Nichtdeterministische Polynomialzeit). Das bedeutet, dass, selbst wenn wir die Lösung für ein Np-Hard Problem kennen, es im Allgemeinen nicht möglich ist, diese Lösung effizient zu überprüfen oder zu berechnen. Wichtige Merkmale von Np-Hard Problemen sind:

  • Sie können nicht in polynomialer Zeit gelöst werden (es sei denn, P = NP).
  • Sie sind oft optimierungsbasiert, wie z.B. das Travelling-Salesman-Problem oder das Rucksackproblem.
  • Lösungen für Np-Hard Probleme können durch heuristische oder approximative Ansätze gefunden werden, die jedoch nicht garantieren, die optimale Lösung zu finden.

Zusammenfassend lässt sich sagen, dass Np-Hard Probleme eine zentrale Herausforderung in der theoretischen Informatik darstellen und signifikante Auswirkungen auf reale Anwendungen haben.