StudierendeLehrende

Cost-Push Inflation

Cost-Push Inflation tritt auf, wenn die Produktionskosten für Unternehmen steigen, was dazu führt, dass sie die höheren Kosten an die Verbraucher weitergeben. Diese Art der Inflation kann durch verschiedene Faktoren ausgelöst werden, wie z.B. steigende Rohstoffpreise, Löhne oder Steuern. Wenn Unternehmen gezwungen sind, mehr für Inputs zu bezahlen, erhöhen sie in der Regel die Preise für ihre Produkte, um ihre Gewinnmargen zu schützen. Dies führt zu einer allgemeinen Preissteigerung, auch wenn die Nachfrage nach Gütern und Dienstleistungen nicht steigt. Ein bekanntes Beispiel sind plötzliche Anstiege der Ölpreise, die die Transport- und Produktionskosten in vielen Branchen erhöhen können. Infolgedessen können Konsumenten weniger für die gleichen Waren und Dienstleistungen kaufen, was die Kaufkraft verringert.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Whole Genome Duplication Events

Whole Genome Duplication (WGD) bezeichnet einen biologischen Prozess, bei dem das gesamte Genom eines Organismus verdoppelt wird. Diese Ereignisse sind von großer Bedeutung in der Evolutionsbiologie, da sie zu einer erhöhten genetischen Variation führen und neue Funktionen ermöglichen können. Durch WGD können Organismen zusätzliche Gene erwerben, die sich im Laufe der Zeit durch Mutation und Natürliche Selektion in neue, spezialisierte Gene umwandeln. Es gibt verschiedene Arten von WGD, darunter die autopolyploide (Verdopplung innerhalb einer Art) und die allopolyploide (Verdopplung zwischen verschiedenen Arten) WGD. Diese Ereignisse haben zur Diversifizierung vieler Pflanzen- und Tierarten beigetragen und sind entscheidend für das Verständnis der evolutionären Mechanismen, die die Biodiversität auf unserem Planeten antreiben.

Rydberg-Atom

Ein Rydberg Atom ist ein Atom, dessen äußeres Elektron in einem stark angeregten Zustand ist, typischerweise in einem hohen Hauptquantenzahl-Zustand nnn. Diese Atome zeichnen sich durch ihre außergewöhnlich großen Radien und die Tatsache aus, dass sie sehr empfindlich auf äußere elektromagnetische Felder reagieren. Aufgrund ihrer Größe und der schwachen Bindung des äußeren Elektrons können Rydberg Atome in der Quantenoptik und der Quanteninformationstechnologie verwendet werden.

Die Rydberg-Atome zeigen auch bemerkenswerte Eigenschaften in Bezug auf Wechselwirkungen untereinander, da ihre großen Elektronenwolken zu einer signifikanten Langstreckenwechselwirkung führen können. Mathematisch können die Energieniveaus eines Rydberg Atoms durch die Formel

En=−RHn2E_n = -\frac{R_H}{n^2}En​=−n2RH​​

beschrieben werden, wobei RHR_HRH​ die Rydberg-Konstante ist und nnn die Hauptquantenzahl darstellt. Diese Eigenschaften machen Rydberg Atome zu einem spannenden Forschungsfeld in der modernen Physik.

Autoencoder

Autoencoders sind eine spezielle Art von neuronalen Netzwerken, die darauf abzielen, Eingabedaten in einer komprimierten Form darzustellen und anschließend wiederherzustellen. Der Netzwerkaufbau besteht aus zwei Hauptkomponenten: einem Encoder und einem Decoder. Der Encoder transformiert die Eingabedaten xxx in eine niedrigdimensionale Repräsentation zzz, während der Decoder versucht, die ursprünglichen Daten aus dieser komprimierten Form wiederherzustellen, also x^=f(z)\hat{x} = f(z)x^=f(z).

Das Hauptziel eines Autoencoders ist es, die Rekonstruktionsfehler zu minimieren, typischerweise durch die Minimierung der Differenz zwischen den ursprünglichen Eingabedaten und den rekonstruierten Daten, oft unter Verwendung der mittleren quadratischen Abweichung (MSE). Autoencoders finden Anwendung in verschiedenen Bereichen, wie z.B. Datenkompression, Anomalieerkennung und Merkmalextraktion, indem sie Muster in den Daten lernen und überflüssige Informationen eliminieren.

Ferroelectric Domain Switching

Ferroelectric Domain Switching bezieht sich auf den Prozess, bei dem sich die Ausrichtung der elektrischen Dipole innerhalb eines ferroelectric Materials ändert. In ferroelectric Materialien existieren verschiedene Domänen, die jeweils eine bevorzugte Richtung der elektrischen Polarisation aufweisen. Durch Anlegen eines externen elektrischen Feldes kann die Polarisation in einer bestimmten Domäne umgeschaltet werden, was zu einer Umkehrung der Dipolrichtung führt. Dieser Prozess ist entscheidend für die Funktion von ferroelectricen Materialien in Anwendungen wie Speichern von Informationen, Sensoren und Aktuatoren. Die Effizienz des Domain Switching hängt von verschiedenen Faktoren ab, einschließlich der Materialstruktur und der Stärke des angelegten elektrischen Feldes. Mathematisch kann dieser Prozess durch die Beziehung zwischen dem äußeren elektrischen Feld EEE und der Polarisation PPP beschrieben werden, wobei die Änderung der Polarisation proportional zum angelegten Feld ist:

ΔP=ϵ⋅E\Delta P = \epsilon \cdot EΔP=ϵ⋅E

wobei ϵ\epsilonϵ die dielektrische Suszeptibilität des Materials darstellt.

Finite Element

Die Finite-Elemente-Methode (FEM) ist ein numerisches Verfahren zur Lösung komplexer physikalischer Probleme, insbesondere in den Ingenieurwissenschaften und der Physik. Bei dieser Methode wird ein kontinuierliches Objekt in eine endliche Anzahl kleiner, diskreter Elemente unterteilt, die als Finite Elemente bezeichnet werden. Jedes Element wird durch einfache Gleichungen beschrieben, und die Eigenschaften des gesamten Systems werden durch die Kombination dieser Elemente bestimmt. Dies ermöglicht es, komplexe Geometrien und Materialverhalten zu modellieren, indem die Differentialgleichungen, die das Verhalten des Systems beschreiben, auf jedes Element angewendet werden.

Die FEM wird häufig in Bereichen wie Strukturmechanik, Thermodynamik und Fluiddynamik eingesetzt. Zu den Vorteilen der Methode gehören die Fähigkeit, die Auswirkungen von Variablen wie Materialeigenschaften und Belastungen auf das gesamte System zu analysieren und vorherzusagen. Typische Anwendungen umfassen die Berechnung von Spannungen in Bauteilen, die Analyse von Wärmeströmen oder die Untersuchung von Strömungsverhalten in Flüssigkeiten.

Pareto-Effizienzgrenze

Die Pareto Efficiency Frontier (auch bekannt als Pareto-Front) ist ein Konzept aus der Wirtschaftswissenschaft und Spieltheorie, das verwendet wird, um effiziente Allokationen von Ressourcen zu beschreiben. Eine Allokation wird als Pareto-effizient bezeichnet, wenn es unmöglich ist, das Wohlbefinden eines Individuums zu verbessern, ohne das eines anderen zu verschlechtern. Die Pareto-Front stellt graphisch alle Punkte dar, an denen die Ressourcenverteilung optimal ist, d.h. wo eine Verbesserung für eine Partei nur durch eine Verschlechterung für eine andere erreicht werden kann.

In einem zweidimensionalen Diagramm, in dem beispielsweise die Menge zweier Güter x1x_1x1​ und x2x_2x2​ dargestellt wird, würde die Pareto-Front die Grenze bilden, die alle Pareto-effizienten Kombinationen dieser Güter zeigt. Punkte unterhalb dieser Grenze repräsentieren ineffiziente Allokationen, während Punkte auf der Grenze optimale Verteilungen darstellen. Die Analyse der Pareto-Front ermöglicht es Entscheidungsträgern, die Trade-offs zwischen verschiedenen Alternativen besser zu verstehen und informierte Entscheidungen zu treffen.