StudierendeLehrende

Nash Equilibrium Mixed Strategy

Ein Nash Equilibrium in einer gemischten Strategie tritt auf, wenn jeder Spieler in einem Spiel eine Wahrscheinlichkeitsverteilung über seine möglichen Strategien wählt, sodass keiner der Spieler einen Anreiz hat, seine Strategie zu ändern, vorausgesetzt, die anderen Spieler halten ihre Strategien konstant. In diesem Kontext bedeutet eine gemischte Strategie, dass ein Spieler nicht immer die gleiche Strategie anwendet, sondern seine Entscheidungen zufällig trifft, um unberechenbar zu bleiben.

Das Nash-Gleichgewicht ist erreicht, wenn die erwarteten Auszahlungen für alle Spieler maximiert sind und die Strategien der Spieler optimal aufeinander abgestimmt sind. Mathematisch ausgedrückt, sei pip_ipi​ die Wahrscheinlichkeit, mit der Spieler iii seine Strategie wählt. Das Gleichgewicht wird erreicht, wenn die Bedingung gilt, dass für jede Strategie sis_isi​ die folgende Ungleichung gilt:

E[ui(si,s−i)]≥E[ui(si′,s−i)]E[u_i(s_i, s_{-i})] \geq E[u_i(s'_i, s_{-i})]E[ui​(si​,s−i​)]≥E[ui​(si′​,s−i​)]

Hierbei ist uiu_iui​ die Auszahlung für Spieler iii, s−is_{-i}s−i​ die Strategien der anderen Spieler und si′s'_isi′​ eine alternative Strategie von Spieler iii. In einem Nash-Gleichgewicht ist also die Wahl der gemischten Strategien eine optimale Antwort auf die Strategien

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Genexpressionsrauschen

Gene Expression Noise bezieht sich auf die zufälligen Schwankungen in der Menge an mRNA und Protein, die aus einem bestimmten Gen in einer Zelle produziert werden. Diese Schwankungen können durch verschiedene Faktoren verursacht werden, darunter die intrinsische Variabilität der Transkriptions- und Translationalprozesse sowie äußere Einflüsse wie Umwelteinflüsse oder Unterschiede zwischen Zellen. Die Ergebnisse sind oft eine heterogene Genexpression, selbst in genetisch identischen Zellen, was zu unterschiedlichen phänotypischen Ausdrücken führen kann.

Die mathematische Modellierung von Gene Expression Noise wird häufig durch stochastische Prozesse beschrieben, wobei die Varianz der Genexpression oft als Funktion der durchschnittlichen Expression dargestellt wird. Dies kann durch die Beziehung:

Var(X)=α⋅E(X)\text{Var}(X) = \alpha \cdot \text{E}(X)Var(X)=α⋅E(X)

ausgedrückt werden, wobei Var(X)\text{Var}(X)Var(X) die Varianz, E(X)\text{E}(X)E(X) den Erwartungswert und α\alphaα einen konstanten Faktor darstellt. Gene Expression Noise spielt eine entscheidende Rolle in der Zellbiologie, da es zur Anpassungsfähigkeit von Zellen beiträgt und ihnen ermöglicht, auf Veränderungen in ihrer Umgebung zu reagieren.

Saysches Gesetz der Märkte

Das Say's Law of Markets, benannt nach dem französischen Ökonomen Jean-Baptiste Say, besagt, dass das Angebot seine eigene Nachfrage schafft. Dies bedeutet, dass die Produktion von Waren und Dienstleistungen automatisch einen Bedarf nach diesen schafft, da die Produzenten Einkommen generieren, das sie dann für den Kauf anderer Güter verwenden. Say argumentierte, dass in einer freien Marktwirtschaft Überproduktion oder Mangel an Nachfrage nicht dauerhaft bestehen können, da die Schaffung von Gütern immer den Kauf von anderen Gütern nach sich zieht.

Ein zentrales Element dieser Theorie ist die Idee, dass alle Einnahmen aus der Produktion entweder in Form von Löhnen, Mieten oder Gewinnen wieder in den Wirtschaftskreislauf zurückfließen. Diese Sichtweise steht im Gegensatz zu keynesianischen Konzepten, die betonen, dass die Nachfrage entscheidend für die wirtschaftliche Aktivität ist. Zusammenfassend lässt sich sagen, dass Say's Law die Bedeutung der Produktion und des Angebots in der Schaffung wirtschaftlicher Nachfrage hervorhebt.

Neurale gewöhnliche Differentialgleichungen

Neural Ordinary Differential Equations (Neural ODEs) sind ein innovativer Ansatz, der die Konzepte der neuronalen Netze mit der Theorie der gewöhnlichen Differentialgleichungen (ODEs) kombiniert. Anstatt die traditionellen Schichten eines neuronalen Netzwerks zu verwenden, modellieren Neural ODEs den Zustand einer dynamischen Systementwicklung kontinuierlich über die Zeit, was bedeutet, dass die Vorhersagen als Lösung einer Differentialgleichung interpretiert werden können.

Mathematisch gesehen wird ein Neural ODE formuliert als:

dz(t)dt=f(z(t),t,θ)\frac{dz(t)}{dt} = f(z(t), t, \theta)dtdz(t)​=f(z(t),t,θ)

wobei z(t)z(t)z(t) der Zustand des Systems zur Zeit ttt ist, fff eine neuronale Netzwerkfunktion darstellt, die die Dynamik des Systems beschreibt, und θ\thetaθ die Parameter des neuronalen Netzes sind. Dieser Ansatz ermöglicht es, die Anzahl der benötigten Parameter zu reduzieren und die Effizienz bei der Modellierung komplexer dynamischer Systeme zu erhöhen. Die Anwendung von Neural ODEs findet sich in verschiedenen Bereichen wie der Physik, Biologie und Finanzmathematik, wo die Modellierung von zeitlichen Veränderungen entscheidend ist.

Transformer Self-Attention Scaling

Die Self-Attention-Mechanik in Transformern ermöglicht es dem Modell, verschiedene Teile einer Eingabesequenz miteinander zu gewichten und zu vergleichen, um den Kontext besser zu erfassen. Bei der Berechnung der Aufmerksamkeit wird ein Skalierungsfaktor eingeführt, um die Ergebnisse der Dot-Produkt-Operation zu stabilisieren. Dieser Faktor ist normalerweise der Quadratwurzel der Dimension der Schlüssel-Vektoren, also dk\sqrt{d_k}dk​​. Ohne diese Skalierung könnten die Dot-Produkte sehr große Werte annehmen, was zu einer extremen Aktivierung der Softmax-Funktion führen würde und somit die Lernstabilität beeinträchtigen könnte. Durch die Skalierung wird sichergestellt, dass die Aufmerksamkeit gleichmäßig verteilt wird und das Modell somit effektiver lernen kann. Die Formel für den Selbstaufmerksamkeitsmechanismus kann dann wie folgt dargestellt werden:

Attention(Q,K,V)=softmax(QKTdk)V\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)VAttention(Q,K,V)=softmax(dk​​QKT​)V

Hierbei sind QQQ, KKK und VVV die Abfragen, Schlüssel und Werte der Eingabe.

Cauchy-Schwarz

Die Cauchy-Schwarz-Ungleichung ist ein fundamentales Resultat in der linearen Algebra und Analysis, das über die Beziehung zwischen zwei Vektoren oder Funktionen Aussage trifft. Sie besagt, dass für zwei endliche Vektoren u\mathbf{u}u und v\mathbf{v}v die folgende Ungleichung gilt:

∣⟨u,v⟩∣≤∥u∥∥v∥|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\|∣⟨u,v⟩∣≤∥u∥∥v∥

Hierbei ist ⟨u,v⟩\langle \mathbf{u}, \mathbf{v} \rangle⟨u,v⟩ das Skalarprodukt der Vektoren und ∥u∥\|\mathbf{u}\|∥u∥ sowie ∥v∥\|\mathbf{v}\|∥v∥ die Normen der Vektoren. Diese Ungleichung hat weitreichende Anwendungen, nicht nur in der Mathematik, sondern auch in den Naturwissenschaften und der Wirtschaft. Besonders wichtig ist sie in der Statistik, um Korrelationen zwischen Variablen zu untersuchen. Zudem wird sie häufig zur Begründung anderer mathematischer Theoreme verwendet, wie beispielsweise dem Satz von Bessel.

Stagflationstheorie

Die Stagflation-Theorie beschreibt eine wirtschaftliche Situation, in der hohe Inflation, stagnierendes Wirtschaftswachstum und hohe Arbeitslosigkeit gleichzeitig auftreten. Dies ist eine problematische Kombination, da traditionelle wirtschaftliche Modelle oft davon ausgehen, dass Inflation und Arbeitslosigkeit invers miteinander korrelieren; wenn die Inflation steigt, sinkt die Arbeitslosigkeit und umgekehrt. In einer Stagflation-Phase hingegen können steigende Preise und sinkende Produktionszahlen zu einem Teufelskreis führen, der sowohl Verbraucher als auch Unternehmen belastet. Die Ursachen für Stagflation können vielfältig sein und reichen von externen Schocks, wie plötzlichen Rohstoffpreiserhöhungen (z.B. Ölkrisen), bis hin zu ungünstigen wirtschaftlichen Rahmenbedingungen. Politische Maßnahmen zur Bekämpfung der Inflation könnten die Arbeitslosigkeit weiter erhöhen, was die Herausforderung für Regierungen und Zentralbanken verstärkt.