StudierendeLehrende

Nyquist Stability

Die Nyquist-Stabilitätskriterium ist ein wichtiges Werkzeug in der Regelungstechnik zur Analyse der Stabilität von Feedback-Systemen. Es basiert auf der Untersuchung der Frequenzantwort eines Systems, insbesondere durch die Betrachtung des Nyquist-Diagramms, das die Übertragungsfunktion G(jω)G(j\omega)G(jω) in der komplexen Ebene darstellt. Ein System ist stabil, wenn die Anzahl der Umläufe um den kritischen Punkt −1+0j-1 + 0j−1+0j im Nyquist-Diagramm und die Anzahl der Pole in der rechten Halbebene (RHP) in einem bestimmten Verhältnis stehen.

Ein zentraler Aspekt des Nyquist-Kriteriums ist die Umfangsregel, die besagt, dass die Stabilität eines Systems analysiert werden kann, indem man zählt, wie oft die Kurve den kritischen Punkt umschlingt. Wenn die Anzahl der Umläufe um diesen Punkt gleich der Anzahl der RHP-Pole des geschlossenen Regelkreises ist, ist das System stabil. Diese Methode ist besonders nützlich, da sie sowohl stabile als auch instabile Systeme anhand ihrer Frequenzantwort beurteilen kann, ohne dass eine vollständige Modellierung erforderlich ist.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Plancksches Gesetz

Das Plancksche Gesetz beschreibt die spektrale Verteilung der elektromagnetischen Strahlung, die von einem idealen schwarzen Körper bei einer bestimmten Temperatur emittiert wird. Es zeigt, dass die Intensität der Strahlung in Abhängigkeit von der Wellenlänge und der Temperatur variiert. Mathematisch wird es durch die Formel dargestellt:

I(λ,T)=2hc2λ5⋅1ehcλkT−1I(\lambda, T) = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{\lambda k T}} - 1}I(λ,T)=λ52hc2​⋅eλkThc​−11​

Hierbei ist I(λ,T)I(\lambda, T)I(λ,T) die Intensität der Strahlung, λ\lambdaλ die Wellenlänge, TTT die Temperatur in Kelvin, hhh das Plancksche Wirkungsquantum, ccc die Lichtgeschwindigkeit und kkk die Boltzmann-Konstante. Wesentlich ist, dass die Strahlung bei höheren Temperaturen eine größere Intensität und eine kürzere Wellenlänge aufweist, was die Grundlage für das Verständnis der thermischen Strahlung bildet. Das Plancksche Gesetz war entscheidend für die Entwicklung der Quantenmechanik, da es die Limitationen der klassischen Physik aufzeigte.

Kapitalwertmodell

Das Capital Asset Pricing Model (CAPM) ist ein fundamentales Modell in der Finanzwirtschaft, das den Zusammenhang zwischen dem Risiko und der erwarteten Rendite eines Vermögenswerts beschreibt. Es basiert auf der Annahme, dass Investoren eine Risiko-Rendite-Prämie verlangen, um das Risiko von Anlageinvestitionen zu kompensieren. Das Modell lässt sich mathematisch durch die folgende Gleichung darstellen:

E(Ri)=Rf+βi(E(Rm)−Rf)E(R_i) = R_f + \beta_i (E(R_m) - R_f)E(Ri​)=Rf​+βi​(E(Rm​)−Rf​)

Hierbei steht E(Ri)E(R_i)E(Ri​) für die erwartete Rendite des Vermögenswerts, RfR_fRf​ für den risikofreien Zinssatz, βi\beta_iβi​ ist das Maß für das systematische Risiko des Vermögenswerts im Vergleich zum Markt und E(Rm)E(R_m)E(Rm​) ist die erwartete Rendite des Marktes. Das CAPM ist besonders nützlich für die Bewertung von Aktien und die Portfolio-Optimierung, da es Investoren hilft, das Risiko eines Vermögenswerts im Kontext des gesamten Marktes zu verstehen. Es ist jedoch wichtig zu beachten, dass das Modell auf bestimmten Annahmen basiert, die in der Praxis nicht immer zutreffen, wie z.B. die Annahme effizienter Märkte.

Prim’S Mst

Der Algorithmus Prim's Minimum Spanning Tree (MST) ist ein effizienter Verfahren zur Bestimmung eines minimalen Spannbaums in einem gewichteten, zusammenhängenden Graphen. Ein minimaler Spannbaum ist ein Teilgraph, der alle Knoten des ursprünglichen Graphen verbindet, ohne Zyklen zu bilden, und dabei die Summe der Kantengewichte minimiert. Der Algorithmus beginnt mit einem beliebigen Startknoten und fügt iterativ die Kante mit dem kleinsten Gewicht hinzu, die einen neuen Knoten verbindet. Dieser Vorgang wird wiederholt, bis alle Knoten im Spannbaum enthalten sind. Prim's Algorithmus hat eine Zeitkomplexität von O(Elog⁡V)O(E \log V)O(ElogV), wobei EEE die Anzahl der Kanten und VVV die Anzahl der Knoten im Graphen ist.

Fehlertoleranz

Fault Tolerance bezeichnet die Fähigkeit eines Systems, auch im Falle von Fehlern oder Ausfällen weiterhin funktionsfähig zu bleiben. Dies ist besonders wichtig in kritischen Anwendungen, wie z.B. in der Luftfahrt, der Medizintechnik oder in Rechenzentren, wo Ausfälle schwerwiegende Konsequenzen haben können. Um Fehlertoleranz zu erreichen, kommen verschiedene Techniken zum Einsatz, wie z.B. Redundanz, bei der mehrere Komponenten oder Systeme parallel arbeiten, sodass der Ausfall eines einzelnen Elements nicht zum Gesamtausfall führt. Ein weiteres Konzept ist die Fehlererkennung und -korrektur, bei der Fehler identifiziert und automatisch behoben werden, ohne dass der Benutzer eingreifen muss. Zusammengefasst ermöglicht Fault Tolerance, dass Systeme stabil und zuverlässig arbeiten, selbst wenn unerwartete Probleme auftreten.

Superhydrophobe Oberflächenbearbeitung

Superhydrophobe Oberflächen sind Materialien, die eine extrem geringe Affinität zu Wasser aufweisen, was bedeutet, dass Wassertropfen darauf nahezu nicht haften bleiben. Dies wird durch spezielle Mikro- und Nanostrukturen erreicht, die eine hohe Oberflächenrauhigkeit erzeugen und die Oberflächenenergie der Materialien stark reduzieren. Ein bekanntes Beispiel für eine superhydrophobe Oberfläche ist das Lotusblatt, das sich selbst reinigt.

Die physikalischen Eigenschaften dieser Oberflächen können durch die sogenannte Lotus-Effekt Theorie beschrieben werden, bei der die Kontaktwinkel von Wassertropfen auf diesen Oberflächen oft größer als 150° sind. Anwendungsbereiche für superhydrophobe Oberflächen sind unter anderem:

  • Selbstreinigende Materialien: Verhindern, dass Schmutz und Flüssigkeiten haften bleiben.
  • Korrosionsschutz: Schützen Metalle und andere Materialien vor Wasser- und Chemikalienangriff.
  • Biomedizinische Anwendungen: Reduzierung von Bakterienhaftung auf medizinischen Geräten.

Durch innovative Verfahren wie chemische Beschichtungen oder physikalische Abscheidung können Ingenieure gezielt solche Oberflächen herstellen und anpassen, um spezifische Eigenschaften für verschiedene Anwendungen zu optimieren.

Differentialgleichungsmodellierung

Differentialgleichungsmodellierung ist ein leistungsfähiges Werkzeug zur Beschreibung dynamischer Systeme, die sich im Laufe der Zeit ändern. Diese Modelle verwenden Differentialgleichungen, um die Beziehungen zwischen Variablen und deren Änderungsraten zu erfassen. Typische Anwendungsgebiete sind unter anderem Biologie (z.B. Populationsdynamik), Physik (z.B. Bewegungsgesetze) und Wirtschaft (z.B. Wachstumsmodelle).

Ein einfaches Beispiel ist das exponentielle Wachstumsmodell, das durch die Gleichung

dPdt=rP\frac{dP}{dt} = rPdtdP​=rP

beschrieben wird, wobei PPP die Population, rrr die Wachstumsrate und ttt die Zeit darstellt. Die Lösung dieser Gleichung ermöglicht es, Vorhersagen über das Verhalten des Systems unter verschiedenen Bedingungen zu treffen. Durch die Analyse solcher Modelle können Forscher und Entscheidungsträger besser informierte Entscheidungen treffen, basierend auf den erwarteten Veränderungen im System.