StudierendeLehrende

Runge-Kutta

Das Runge-Kutta-Verfahren ist eine weit verbreitete Methode zur numerischen Lösung gewöhnlicher Differentialgleichungen. Es handelt sich um ein iteratives Verfahren, das die Lösung schrittweise approximiert, indem es mehrere Zwischenschritte innerhalb jedes Zeitintervalls berechnet. Die bekannteste Form ist das klassische 4. Ordnung Runge-Kutta-Verfahren, das vier Steigungen (K-Werte) pro Schritt verwendet, um eine genauere Schätzung des nächsten Punktes zu erhalten.

Die allgemeinen Schritte für das 4. Ordnung Runge-Kutta-Verfahren lauten:

  1. Berechne die ersten K-Werte:

    • k1=h⋅f(tn,yn)k_1 = h \cdot f(t_n, y_n)k1​=h⋅f(tn​,yn​)
    • k2=h⋅f(tn+h2,yn+k12)k_2 = h \cdot f(t_n + \frac{h}{2}, y_n + \frac{k_1}{2})k2​=h⋅f(tn​+2h​,yn​+2k1​​)
    • k3=h⋅f(tn+h2,yn+k22)k_3 = h \cdot f(t_n + \frac{h}{2}, y_n + \frac{k_2}{2})k3​=h⋅f(tn​+2h​,yn​+2k2​​)
    • k4=h⋅f(tn+h,yn+k3)k_4 = h \cdot f(t_n + h, y_n + k_3)k4​=h⋅f(tn​+h,yn​+k3​)
  2. Berechne den nächsten Wert:

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Nash-Gleichgewicht

Das Nash Equilibrium ist ein zentrales Konzept in der Spieltheorie, das beschreibt, in welchem Zustand Spieler in einem Spiel strategische Entscheidungen treffen, sodass keiner der Spieler einen Anreiz hat, seine Strategie einseitig zu ändern. In einem Nash-Gleichgewicht wählt jeder Spieler die beste Strategie, gegeben die Strategien der anderen Spieler. Dies bedeutet, dass alle Spieler gleichzeitig optimal handeln, und zwar in dem Sinne, dass ihr Nutzen maximiert wird, solange die anderen Spieler ihre Entscheidungen beibehalten.

Mathematisch lässt sich das Nash-Gleichgewicht wie folgt formulieren: Sei SiS_iSi​ die Strategie des Spielers iii und Ui(S1,S2,…,Sn)U_i(S_1, S_2, \ldots, S_n)Ui​(S1​,S2​,…,Sn​) die Nutzenfunktion. Ein Nash-Gleichgewicht liegt vor, wenn für jeden Spieler iii gilt:

Ui(S1,S2,…,Sn)≥Ui(S1,S2,…,Si−1,Si′,Si+1,…,Sn)U_i(S_1, S_2, \ldots, S_n) \geq U_i(S_1, S_2, \ldots, S_{i-1}, S_i', S_{i+1}, \ldots, S_n)Ui​(S1​,S2​,…,Sn​)≥Ui​(S1​,S2​,…,Si−1​,Si′​,Si+1​,…,Sn​)

für alle möglichen Strategien Si′S_i'Si′​ von Spieler iii. Ein bekanntes Beispiel für ein Nash-Gleichgewicht ist das Gefangenendilemma, wo zwei Gefangene, die unabhängig entscheiden, ob sie gestehen oder schweigen, im Gleich

Eigenwert-Störungstheorie

Die Eigenvalue Perturbation Theory beschäftigt sich mit der Analyse von Veränderungen der Eigenwerte und Eigenvektoren eines Operators oder einer Matrix, wenn dieser durch eine kleine Störung modifiziert wird. Wenn wir eine Matrix AAA haben, deren Eigenwerte und Eigenvektoren bekannt sind, und wir eine kleine Störung EEE hinzufügen, sodass die neue Matrix A′=A+EA' = A + EA′=A+E ist, können wir die Auswirkungen dieser Störung auf die Eigenwerte und Eigenvektoren untersuchen.

Die Theorie zeigt, dass die Eigenwerte λ\lambdaλ einer Matrix AAA und die zugehörigen Eigenvektoren vvv sich unter der Störung wie folgt ändern:

λ′≈λ+⟨v,Ev⟩\lambda' \approx \lambda + \langle v, E v \rangleλ′≈λ+⟨v,Ev⟩

Hierbei bezeichnet ⟨v,Ev⟩\langle v, E v \rangle⟨v,Ev⟩ das Skalarprodukt zwischen dem Eigenvektor vvv und dem durch die Störung EEE veränderten Eigenvektor. Diese Erkenntnisse sind besonders nützlich in der Quantenmechanik und der Stabilitätsanalyse, wo es oft erforderlich ist, die Reaktion eines Systems auf kleine Veränderungen zu verstehen.

Diffusionsnetzwerke

Diffusion Networks sind spezielle Arten von Netzwerken, die sich mit der Ausbreitung von Informationen, Ideen oder Produkten in sozialen oder technischen Systemen befassen. Diese Netzwerke modellieren, wie Individuen oder Knoten innerhalb eines Netzwerks interagieren und wie diese Interaktionen die Verbreitung von bestimmten Inhalten beeinflussen. Häufig werden sie in der Marketingforschung verwendet, um zu verstehen, wie Produkte von einem Nutzer zum nächsten weitergegeben werden, oder um die Verbreitung von Innovationen zu analysieren.

Ein zentrales Konzept in Diffusion Networks ist die Diffusionsgeschwindigkeit, die beschreibt, wie schnell eine Idee oder ein Produkt innerhalb des Netzwerks verbreitet wird. Die mathematische Modellierung dieser Prozesse kann durch Differentialgleichungen oder durch probabilistische Ansätze erfolgen. Zum Beispiel kann die Diffusion in einem Netzwerk oft durch eine Gleichung wie folgt dargestellt werden:

dI(t)dt=βS(t)I(t)−γI(t)\frac{dI(t)}{dt} = \beta S(t) I(t) - \gamma I(t)dtdI(t)​=βS(t)I(t)−γI(t)

Hierbei steht I(t)I(t)I(t) für die Anzahl der infizierten Knoten, S(t)S(t)S(t) für die Anzahl der anfälligen Knoten, β\betaβ für die Übertragungsrate und γ\gammaγ für die Genesungsrate. Solche Modelle helfen, strategische Entscheidungen zur Maximierung der Diffusionsrate zu treffen.

Persistenter Segmentbaum

Ein Persistent Segment Tree ist eine Datenstruktur, die es ermöglicht, den Zustand eines Segmentbaums über verschiedene Versionen hinweg beizubehalten. Anders als ein gewöhnlicher Segmentbaum, der nur den aktuellen Zustand speichert, ermöglicht der persistente Segmentbaum, frühere Versionen des Baums nach Änderungen (z.B. Einfügungen oder Löschungen) wieder abzurufen. Dies geschieht durch die Verwendung von immutable (unveränderlichen) Knoten, was bedeutet, dass bei jeder Modifikation ein neuer Knoten erstellt wird, während die alten Knoten weiterhin verfügbar bleiben.

Die Zeitkomplexität für Abfragen und Modifikationen beträgt im Allgemeinen O(log⁡n)O(\log n)O(logn), und die Speicherkosten wachsen linear mit der Anzahl der Modifikationen, da jede Version des Baums in der Regel O(log⁡n)O(\log n)O(logn) Knoten benötigt. Diese Eigenschaften machen den persistenten Segmentbaum ideal für Anwendungen in der funktionalen Programmierung oder bei Problemen, bei denen frühere Zustände benötigt werden, wie beispielsweise in der Versionierung von Daten oder bei der Analyse von Zeitreihen.

Gleitmodusregelung Anwendungen

Sliding Mode Control (SMC) ist eine robuste Regelungstechnik, die in verschiedenen Anwendungen eingesetzt wird, insbesondere in der Automatisierungstechnik und Robotik. Diese Methode ist besonders effektiv bei der Steuerung von Systemen mit Unsicherheiten und Störungen, da sie die Dynamik des Systems durch eine gezielte Steuerung des Zustandsraums verändert.

Ein typisches Anwendungsgebiet von SMC ist die Fahrzeugregelung, wo es hilft, die Stabilität und Fahrsicherheit unter wechselnden Bedingungen zu gewährleisten. Auch in der Robotik findet SMC Anwendung, um präzise Bewegungen zu ermöglichen, selbst wenn externe Kräfte auf den Roboter wirken. Darüber hinaus wird SMC in der Wiederherstellung von Energie in erneuerbaren Energiesystemen verwendet, um die Effizienz der Energieumwandlung zu maximieren.

Die Flexibilität und Robustheit von SMC machen es zu einer beliebten Wahl für Systeme, die nichtlineare Dynamiken und zeitvariable Unsicherheiten aufweisen.

Dynamische stochastische allgemeine Gleichgewichtstheorie

Dynamic Stochastic General Equilibrium (DSGE) ist ein wirtschaftswissenschaftliches Modell, das verwendet wird, um die Dynamik von Volkswirtschaften über die Zeit zu analysieren und zu verstehen. Bei DSGE-Modellen wird angenommen, dass die Wirtschaft von verschiedenen stochastischen Schocks (z. B. technologische Veränderungen, Politikänderungen) beeinflusst wird, die zufällig auftreten können. Diese Modelle integrieren sowohl dynamische als auch stochastische Elemente, was bedeutet, dass sie die Zeitdimension berücksichtigen und gleichzeitig Unsicherheiten in der Wirtschaft abbilden.

Die Grundstruktur eines DSGE-Modells umfasst typischerweise:

  • Haushalte, die Entscheidungen über Konsum und Ersparnis treffen,
  • Unternehmen, die Produktionsentscheidungen basierend auf Kosten und Erträgen treffen,
  • Regierungen, die fiskalpolitische Entscheidungen treffen.

Mathematisch werden diese Modelle häufig durch Gleichungen dargestellt, die das Verhalten der verschiedenen Akteure in der Wirtschaft und ihre Interaktionen beschreiben. Ein einfaches Beispiel für eine Gleichung könnte sein:

Yt=AtKtαLt1−αY_t = A_t K_t^\alpha L_t^{1-\alpha}Yt​=At​Ktα​Lt1−α​

Hierbei ist YtY_tYt​ die Produktionsmenge, AtA_tAt​ der technologische Fortschritt, KtK_tKt​ der Kapitalstock und LtL_tLt​ die Arbeit. DSG