StudierendeLehrende

Overlapping Generations Model

Das Overlapping Generations Model (OLG-Modell) ist ein fundamentales Konzept in der modernen Wirtschaftstheorie, das die Interaktionen zwischen verschiedenen Generationen in einer Volkswirtschaft untersucht. Es geht davon aus, dass Individuen in verschiedenen Lebensphasen leben und wirtschaftliche Entscheidungen treffen, die sowohl ihre eigene Generation als auch die nachfolgende Generation beeinflussen. In diesem Modell arbeiten ältere und jüngere Generationen gleichzeitig, was bedeutet, dass es Überschneidungen in den Zeiträumen gibt, in denen die Generationen aktiv sind.

Ein zentrales Merkmal des OLG-Modells ist, dass es die Dynamik von Ersparnissen und Investitionen über Zeit betrachtet. Wirtschaftliche Entscheidungen, wie das Sparen für den Ruhestand oder Investitionen in Bildung, haben langfristige Auswirkungen auf die wirtschaftliche Entwicklung. Mathematisch wird das Modell häufig durch Gleichungen dargestellt, die die optimale Konsum- und Sparstrategie der Individuen beschreiben, typischerweise in Form von Nutzenmaximierung unter Berücksichtigung von Budgetrestriktionen:

U(ct)+βU(ct+1)U(c_t) + \beta U(c_{t+1})U(ct​)+βU(ct+1​)

Hierbei steht U(ct)U(c_t)U(ct​) für den Nutzen des Konsums zum Zeitpunkt ttt, ct+1c_{t+1}ct+1​ für den Konsum der nächsten Generation und β\betaβ für den Diskontfaktor, der die

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Photonische Kristallmoden

Photonic Crystal Modes sind spezielle Zustände elektromagnetischer Felder, die in photonic crystals, also photonic crystals, auftreten. Diese Materialien besitzen eine periodische Struktur, die die Ausbreitung von Licht in bestimmten Frequenzen oder Wellenlängen kontrolliert. Die interne Struktur dieser Kristalle führt zu einem sogenannten Bandgap, ähnlich wie in Halbleitern, was bedeutet, dass bestimmte Frequenzen von Licht nicht durch das Material propagieren können.

Die Modi können in zwei Hauptkategorien unterteilt werden: die leitenden Modi, die in den erlaubten Frequenzbereichen liegen, und die verbotenen Modi, die im Bandgap liegen und nicht existieren können. Mathematisch werden diese Modi oft durch die Schrödinger-Gleichung oder die Maxwell-Gleichungen beschrieben, wobei die Lösung der Gleichungen die spezifischen Frequenzen und Feldverteilungen der Photonen in dem Kristall bestimmt. Diese Eigenschaften machen Photonic Crystal Modes besonders interessant für Anwendungen in der Optoelektronik, wie z.B. in Laserdesign, Sensoren und der Entwicklung effizienter Lichtquellen.

Zelluläre Bioinformatik

Cellular Bioinformatics ist ein interdisziplinäres Forschungsfeld, das sich mit der Analyse und Interpretation von biologischen Daten auf zellulärer Ebene beschäftigt. Es kombiniert Techniken aus der Bioinformatik, Molekularbiologie und Systembiologie, um komplexe biologische Systeme zu verstehen. Durch den Einsatz von Computermodellen und Algorithmen werden große Datenmengen, wie Genomsequenzen oder Proteininteraktionen, verarbeitet und visualisiert. Ziel ist es, Muster und Zusammenhänge zu identifizieren, die für die Zellfunktion, Krankheitsmechanismen oder Therapieansätze von Bedeutung sind. Zu den häufig verwendeten Methoden gehören Maschinelles Lernen, Datenbankabfragen und Netzwerkanalysen, die es den Forschern ermöglichen, tiefere Einblicke in die zellulären Prozesse zu gewinnen.

Plasmonische Wellenleiter

Plasmonische Wellenleiter sind spezielle optische Wellenleiter, die die Wechselwirkung zwischen Licht und Elektronen an der Oberfläche von Metallen nutzen. Sie ermöglichen die Übertragung von Lichtsignalen auf sehr kleinen Skalen, oft im Nanometerbereich, was sie besonders geeignet für Anwendungen in der Nanophotonik und der Plasmonik macht. Diese Wellenleiter basieren auf dem Phänomen der Plasmonen, die kollektive Schwingungen von Elektronen an der Metalloberfläche darstellen und die Fähigkeit haben, Licht in den subwellenlängen Bereich zu komprimieren. Ein wichtiger Vorteil von plasmonischen Wellenleitern ist ihre hohe räumliche und spektrale Empfindlichkeit, wodurch sie in Sensoren oder in der Informationsübertragung verwendet werden können. Mathematisch lassen sich die Eigenschaften von plasmonischen Wellenleitern durch die Maxwell-Gleichungen und die Dispersion von Plasmonen beschreiben, wobei die Beziehung zwischen Frequenz ω\omegaω und Wellenzahl kkk oft in Form von Dispersionrelationen formuliert wird.

Laffer-Kurve Fiskalpolitik

Die Laffer-Kurve ist ein wirtschaftliches Konzept, das den Zusammenhang zwischen Steuersätzen und den staatlichen Einnahmen beschreibt. Sie zeigt, dass es einen optimalen Steuersatz gibt, bei dem die Einnahmen maximiert werden; sowohl zu niedrige als auch zu hohe Steuersätze können zu geringeren Einnahmen führen. Dies geschieht, weil sehr niedrige Steuersätze möglicherweise nicht genug Einnahmen generieren, während sehr hohe Steuersätze Investitionen und Arbeitsanreize verringern können, was zu einer Verringerung der wirtschaftlichen Aktivität führt.

Die Kurve kann mathematisch dargestellt werden, wobei die Steuerquote auf der x-Achse und die Steuererträge auf der y-Achse abgetragen werden. Der Verlauf der Kurve zeigt, dass es einen Punkt gibt, an dem eine Erhöhung des Steuersatzes nicht nur die Einnahmen nicht steigert, sondern sie tatsächlich verringert. Die Laffer-Kurve wird oft genutzt, um politische Entscheidungen zu unterstützen, indem sie argumentiert, dass Steuersenkungen unter bestimmten Bedingungen langfristig zu höheren Einnahmen führen können.

Fundamentalgruppe eines Torus

Die fundamentale Gruppe eines Tors ist ein zentrales Konzept der algebraischen Topologie, das die Struktur der geschlossenen Kurven auf der Fläche beschreibt. Ein Torus kann als das Produkt von zwei Kreisen S1×S1S^1 \times S^1S1×S1 angesehen werden, was bedeutet, dass er zwei unabhängige Schleifen hat. Die fundamentale Gruppe des Tors wird durch π1(T)\pi_1(T)π1​(T) dargestellt und ist isomorph zu Z×Z\mathbb{Z} \times \mathbb{Z}Z×Z, was bedeutet, dass jede Schleife auf dem Torus durch zwei ganze Zahlen beschrieben werden kann, die die Anzahl der Windungen um die beiden Richtungen des Tors repräsentieren.

Formal ausgedrückt, wenn aaa und bbb die beiden Generatoren der Gruppe sind, dann kann jede Schleife als ambna^m b^nambn für ganze Zahlen mmm und nnn dargestellt werden. Diese Struktur zeigt, dass der Torus eine viel reichhaltigere Topologie hat als einfachere Flächen wie die Sphäre, die eine fundamentale Gruppe hat, die trivial ist.

Pole Placement Regelungdesign

Das Pole Placement Controller Design ist eine Methode zur Regelungstechnik, die darauf abzielt, die Pole eines dynamischen Systems durch geeignete Auswahl von Rückführungsgewinnen zu platzieren. Dies geschieht in der Regel bei linearen, zeitinvarianten Systemen, die durch Zustandsraumdarstellungen beschrieben werden. Der Hauptgedanke besteht darin, die Systemdynamik zu beeinflussen und das Verhalten des Systems zu steuern, indem man die Eigenwerte der geschlossenen Schleife an gewünschte Positionen im komplexen Bereich verlagert.

Der Prozess umfasst typischerweise die folgenden Schritte:

  1. Modellierung des Systems: Zuerst wird das System durch seine Zustandsraumdarstellung definiert, normalerweise in der Form x˙=Ax+Bu\dot{x} = Ax + Bux˙=Ax+Bu, wobei AAA die Systemmatrix, BBB die Eingangsmatrix, xxx der Zustandsvektor und uuu der Eingang ist.
  2. Auswahl der Zielpole: Der Ingenieur wählt die gewünschten Pole, die das dynamische Verhalten des Systems (z.B. Stabilität, Überschwingverhalten) bestimmen.
  3. Berechnung der Rückführungsgewinne: Mithilfe des Ackermann-Formulars oder anderer Methoden werden die Rückführungsgewinne KKK so bestimmt, dass die Eigenwerte der Matrix